在漫漫数学银河中,诞生了无数美丽的数学公式,他们宛如一颗颗璀璨的明珠光彩夺目,而只有一个公式被称为上帝公式,它就是欧拉公式。欧拉公式对我们来说都不陌生,但是如何从几何角度理解这个公式呢?我们来看一下它有什么特别之处。
它的形式是这样的:
其中e是自然常数,i是虚数,sincos是三角函数。当X等于π的时候,公式就变成了
这个公式就是欧拉恒等式,这个等式包含了自然常数,虚数,圆周率和自然数。每一个单拎出来都是数学领域中非常重要的存在。而欧拉公式将这些数以一种简洁的形式结合在一起。
我先解释一下欧拉公式的几何意义。
复指数函数在复平面上的表现形式与单位圆紧密相关,这一性质是基于欧拉
公式将复数的指数形式与三角函数联系起来。当我们考虑 𝑥为实数时,的实部是cos(x),虚部是sin(x)。
在复平面上,以实数x为横坐标,虚数i为纵坐标,一个点可以用坐标(a,b) 来表示,其中 a 是实部,b是虚部,这对应于复数。当考虑
时,随着 𝑥从 0变化到 2𝜋,点 (cos(x),sin(x)) 在单位圆上描绘出一条路径,这是因为:
cos(x) 表示该点沿水平(实轴)方向的位置,其值范围从 -1 到 1。
sin(x) 表示该点沿垂直(虚轴)方向的位置,其值范围同样从 -1 到 1。
随着 𝑥增加:
- 当 x=0, cos(0)=1, sin(0)=0,点位于单位圆的正实轴上(即点 (1, 0))。
- 随着 𝑥 从 0增加到 𝜋,点沿单位圆逆时针移动到点 (−1,0)。
- 当 x=π, cos(π)=−1, sin(π)=0。
- 继续增加 𝑥 直到2π,点又回到了起点 (1,0)。
因此,描述了单位圆上的一点随角度 𝑥 的变化而逆时针旋转的路径。这个旋转的速度是均匀的,每增加 2𝜋,点就完成一圈完整的旋转,这正好对应于复数的周期性。这就是为什么复指数函数
在复平面上可以表示为逆时针旋转的单位圆的原因。
那么,对求导的几何意义是什么呢?
已知欧拉公式为:
对两边同时求导,得到:
使用三角恒等变换
可以重写上述结果为:
这表明的导数等于原函数乘以𝑖,在复平面上这相当于将原点处的向量逆时针旋转了 90∘或 𝜋/2 弧度。这是因为乘以 𝑖实际上是在做以下变换:
- 实部变为原来的虚部,
- 虚部变为原来实部的相反数,
这样的操作效果就是在复平面上将向量旋转了 90∘,保持模长不变。因此,复指数函数的导数不仅在数学上表现为乘以 𝑖,在几何上也直观地对应于复平面上的逆时针旋转 90∘。
求导得到的式子在物理运动上有什么含义呢?
我们回头看一下之前求导的结果,我们将原函数当作位置函数,那么求导后就是速度函数,而我们可以发现,速度的方向就是位置的九十度旋转,这就解释了为什么会绕着单位圆旋转。
那么欧拉公式的应用有哪些呢?
欧拉公式将三角函数与复指数函数联系起来,提供了一种强大的复数表示方法。在信号分析中,傅里叶变换是将时域信号转换为频域信号的关键手段,而时域信号常常涉及正弦波和余弦波的组合。通过欧拉公式,这些正弦余弦波可以被复指数函数替代,其中 𝜔 是角频率,𝑡是时间。傅里叶变换中,信号被分解为不同频率的正弦波分量的线性组合。由于欧拉公式允许将三角函数转换为指数形式,这极大地简化了傅里叶变换的计算过程。使用复指数函数作为基函数,可以将原本涉及多个三角函数的积分简化为单一的复数运算,使得分析更加直观和高效。
麦克斯韦方程组的解经常涉及到复数表示,尤其是在求解波动问题时。电磁波的传播可以用复指数函数来描述,这里 𝑘是波数,𝜔是角频率,𝑧和 𝑡分别代表空间和时间变量。这个复指数形式可以直接从欧拉公式推导出来,帮助我们更容易地处理波动的振幅和相位信息。
在计算机图形学中,旋转是基本的几何变换之一。虽然通常使用矩阵来表示3D空间中的旋转,但旋转操作的本质可以追溯到复数平面上的旋转,即通过复数乘法实现。复数表示逆时针旋转 θ 弧度,这启发了如何在计算机中高效地实现二维图形的旋转。例如,当处理纹理映射、图标旋转或任何涉及2D图形的旋转时,欧拉公式的思想简化了算法的设计。