一、准备数据:将图像转换为测试向量
1.目录trainingDigits中包含大约2000个例子,每个例子如下图所示,,每个数字大约有200个样本;目录testDigits中包含了大约900个测试数据。使用目录trainingDigits中的数据训练分类器,使用目录testDigits中的数据测试分类器的效果;
2.为了使用之前例子的分类器,必须将图像格式化处理为一个向量。我们将把一个32x32的二进制图像矩阵转换为1x1024的向量,这样之前的分类器就可以处理数字图像信息了。首先编写函数img2vector,将图像转换为向量:该函数创建1x1024的NumPy数组,然后打开给定的文件,循环读出文件的前32行,并将每行的头32个字符值存储在Numpy数组中,最后返回数组;
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
3.将代码输入kNN.py文件中,在python命令行输入下列命令测试img2vector函数,然后与文本编辑器打开的文件进行比较:
>>>testVector = kNN.img2vector(‘testDigits/5_56.txt’)
>>>testVector[0,0:31]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
>>>testVector[0,32:63]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1.,
1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
二、测试算法:使用k-近邻算法识别手写数字
1.自包含函数handwritingClassTest()是测试分类器的代码,将其写入kNN.py文件中,但是必须先确保from os import listdir写入文件的起始部分,功能是从os模块中导入函数listdir,它可以列出给定目录的文件名;
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount += 1.0
print ("\nthe total number of errors is: %d" % errorCount)
print ("\nthe total error rate is: %f" % (errorCount/float(mTest)))
2.在python命令提示符中输入kNN.handwritingClassTest(),测试函数的输出结果如图所示:
3.可以得出:k-近邻算法识别手写数字数据集,错误率为1.1%,改变变量k的值,修改函数handwritingClassTest随机选取训练样本,改变训练样本的数目,都会对k-近邻算法的错误率产生影响,以观察错误率的变化。