组合数相关

组合数板子

int fac[N << 1],invfac[N << 1];
int C(int n,int m)
{
    return n < m ? 0 : (long long)fac[n] * invfac[m] % mod * invfac[n - m] % mod;
}
void init()
{
	// i最大值为数据量
    fac[0]=invfac[0]=invfac[1]=1;
    for(int i=1;i<=2e6 + 10;i++)fac[i]=(long long)fac[i-1]*i%mod;
    for(int i=2;i<=2e6 + 10;i++)invfac[i]=(long long)(mod-mod/i)*invfac[mod%i]%mod;
    for(int i=2;i<=2e6 + 10;i++)invfac[i]=(long long)invfac[i-1]*invfac[i]%mod;
}
namespace CNM {//组合数板子
    const int N = 2e6 + 5;
    ll quick(ll x, ll n)
    {
        ll res = 1;
        while (n)
        {
            if (n & 1) res = (res*x) % mod;
            x = x * x%mod;
            n >>= 1;
        }
        return res;
    }
    ll inv(ll x) { return quick(x, mod - 2); }
    ll fac[N], invfac[N];
    void init()
    {
        fac[0] = 1;
        for (int i = 1; i < N; ++i) fac[i] = (fac[i - 1] * i) % mod;
        invfac[N - 1] = inv(fac[N - 1]);
        for (int i = N - 2; i >= 0; --i) invfac[i] = (invfac[i + 1] * (i + 1)) % mod;
    }
    ll C(int n, int m)
    {
        if (n < m || m < 0) return 0;
        return fac[n] * invfac[m] % mod*invfac[n - m] % mod;
    }
}

// lucas 定理
int qmi(int a, int k, int p)  // 快速幂模板
{
    int res = 1 % p;
    while (k)
    {
        if (k & 1) res = res * a % p;
        a = a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p)  // 通过定理求组合数C(a, b)
{
    if (a < b) return 0;

    int x = 1, y = 1;  // x是分子,y是分母
    for (int i = a, j = 1; j <= b; i --, j ++ )
    {
        x = x * i % p;
        y =  y * j % p;
    }

    return x * qmi(y, p - 2, p) % p;
}

int lucas(int a, int b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (int)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}
//扩展 lucas定理
#define gc getchar
void exgcd(ll a, ll b, ll &x, ll &y) {
    if (!b)
        return (void)(x = 1, y = 0);
    exgcd(b, a % b, x, y);
    ll tmp = x;
    x = y;
    y = tmp - a / b * y;
}
ll gcd(ll a, ll b) {
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
inline ll INV(ll a, ll p) {
    ll x, y;
    exgcd(a, p, x, y);
    return (x + p) % p;
}
inline ll lcm(ll a, ll b) {
    return a / gcd(a, b) * b;
}
inline ll mabs(ll x) {
    return (x > 0 ? x : -x);
}
inline ll fast_mul(ll a, ll b, ll p) {
    ll t = 0;
    a %= p;
    b %= p;
    while (b) {
        if (b & 1LL)
            t = (t + a) % p;
        b >>= 1LL;
        a = (a + a) % p;
    }
    return t;
}
inline ll fast_pow(ll a, ll b, ll p) {
    ll t = 1;
    a %= p;
    while (b) {
        if (b & 1LL)
            t = (t * a) % p;
        b >>= 1LL;
        a = (a * a) % p;
    }
    return t;
}
inline ll F(ll n, ll P, ll PK) {
    if (n == 0)
        return 1;
    ll rou = 1; //循环节
    ll rem = 1; //余项
    for (ll i = 1; i <= PK; i++) {
        if (i % P)
            rou = rou * i % PK;
    }
    rou = fast_pow(rou, n / PK, PK);
    for (ll i = PK * (n / PK); i <= n; i++) {
        if (i % P)
            rem = rem * (i % PK) % PK;
    }
    return F(n / P, P, PK) * rou % PK * rem % PK;
}
inline ll G(ll n, ll P) {
    if (n < P)
        return 0;
    return G(n / P, P) + (n / P);
}
inline ll C_PK(ll n, ll m, ll P, ll PK) {
    ll fz = F(n, P, PK), fm1 = INV(F(m, P, PK), PK), fm2 = INV(F(n - m, P, PK), PK);
    ll mi = fast_pow(P, G(n, P) - G(m, P) - G(n - m, P), PK);
    return fz * fm1 % PK * fm2 % PK * mi % PK;
}
ll A[1001], B[1001];
//x=B(mod A)
inline ll exLucas(ll n, ll m, ll P) {
    ll ljc = P, tot = 0;
    for (ll tmp = 2; tmp * tmp <= P; tmp++) {
        if (!(ljc % tmp)) {
            ll PK = 1;
            while (!(ljc % tmp)) {
                PK *= tmp;
                ljc /= tmp;
            }
            A[++tot] = PK;
            B[tot] = C_PK(n, m, tmp, PK);
        }
    }
    if (ljc != 1) {
        A[++tot] = ljc;
        B[tot] = C_PK(n, m, ljc, ljc);
    }
    ll ans = 0;
    for (ll i = 1; i <= tot; i++) {
        ll M = P / A[i], T = INV(M, A[i]);
        ans = (ans + B[i] * M % P * T % P) % P;
    }
    return ans;
}

记一个数学推导

在这里插入图片描述

练习

10226 「一本通 6.6 例 1」计算系数

二项式系数
( x + y ) n = ∑ i = 0 n C n i x n − i y i (x+y)^n = \sum_{i=0}^nC_n^ix^{n-i}y^i (x+y)n=i=0nCnixniyi

int qmi(int x,int n){
    int res = 1;
    while(n){
        if(n&1) res  = (res*x)%mod;
        x =  (x*x)%mod;
        n >>= 1;
    }
    return res;
}

int C(int n,int m){
    if(n < m || m <0) return 0;
    int res = 1;

    for(int i = n,j = 1;j <= m;j++,i--){
        res = (res*i)%mod;
        res = (res*qmi(j,mod-2))%mod;
    }
    return res;
}
signed main()
{
    int a,b,k,n,m;cin>>a>>b>>k>>n>>m;
    int res = C(k,m)*qmi(a,n)*qmi(b,m)%mod;
    cout << res << endl;
    return 0;
}

10227 「一本通 6.6 例 2」 2 k 2^k 2k 进制数

考虑 k ∣ w k\mid w kw k ∤ w k \nmid w kw 两种情况
k ∣ w k \mid w kw
即在 0 ∼ 2 k − 1 0\sim 2^k-1 02k1中选 1 ∼ w / k 1\sim w/k 1w/k个数,且r至少两位,方案数 = ∑ i = 2 w / k C 2 k − 1 i \sum_{i=2}^{w/k}C_{2^k-1}^i i=2w/kC2k1i;
k ∤ w k \nmid w kw
t = w / k t = w/k t=w/k ,余下的 t t t位可以表示为一位范围为 0 ∼ 2 t − 1 0 \sim 2^t-1 02t1的数,令 i ∈ [ 0 , 2 t − 1 ] i ∈ [0,2^t-1] i[0,2t1] ,那么后 w / k w/k w/k位的取值为 2 t − 1 − i 2^t-1-i 2t1i ,当 i = 0 i = 0 i=0 属于情况1,所以方案数 = ∑ i = 1 2 t − 1 C 2 t − 1 − i w / k \sum_{i=1}^{2^t-1}C_{2^t-1-i}^{w/k} i=12t1C2t1iw/k
那么答案为两种情况相加
a n s = ∑ i = 2 w / k C 2 k − 1 i + ∑ i = 1 2 t − 1 C 2 t − 1 − i w / k ans = \sum_{i=2}^{w/k}C_{2^k-1}^i +\sum_{i=1}^{2^t-1}C_{2^t-1-i}^{w/k} ans=i=2w/kC2k1i+i=12t1C2t1iw/k
数据量很大,需要用到大数
大数板子来自

typedef BigInteger bign;

int k,w;
bign ans,f[600][600];
bign a,b;
int main()
{
    cin>>k>>w;
    forr(i,0,550)forr(j,0,i){
        if(!j) f[i][j] = 1;
        else f[i][j] = f[i-1][j]+f[i-1][j-1];
    }
    //cout << f[2][2] << endl;
    int p = w/k;
    int mi = ((1<<k) - 1);
    int yu = w%k;
    ans = 0;
    for(int i = 2; i <= p;i++) ans += f[mi][i];
    for(int i = 1; i <= ((1<<yu)-1);i++) ans += f[mi-i][p];
    cout << ans;

    return 0;
}

10228. 「一本通 6.6 例 3」组合

lucas 定理板子

10229. 「一本通 6.6 例 4」古代猪文

扩展Lucas定理,由于模数p质因数分解后只有 4 4 4个因子且幂位 1 1 1,所以构建同余方程中国剩余定理求解

int pri[5] = {0,2,3,4679,35617};

int a[5];
int exgcd(int a,int b,int &x,int &y)
{
    if(b==0) {
        x=1;y=0;return a;
    }
    int d=exgcd(b,a%b,x,y);
    int z=x;x=y;y=z-y*(a/b);
    return d; 
}

int qmi(int a, int k, int p) { 
    int res = 1 % p;
    while (k){
        if (k & 1) res = (ll)res * a % p;
        a = (ll)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p)  // 通过定理求组合数C(a, b)
{
    if (a < b) return 0;
    ll x = 1, y = 1;  // x是分子,y是分母
    for (int i = a, j = 1; j <= b; i --, j ++ ){
        x = (ll)x * i % p;
        y = (ll) y * j % p;
    }
    return x * (ll)qmi(y, p - 2, p) % p;
}
int lucas(ll a, ll b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (ll)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

int M[5];
int crt()
{
    int ans=0;
    int m=1;
    for(int i=1;i<=4;++i) m*=pri[i];
    for(int i=1;i<=4;++i) M[i]=m/pri[i];
    for(int i=1;i<=4;++i)
    {
        int x,y,d;
        d=exgcd(M[i],pri[i],x,y);
        x=(x%pri[i]+pri[i])%pri[i];
        ans=(ans + a[i]*M[i]*x)%m;
    }
    return ans;
}
int n,g;
signed main()
{
    cin >> n >> g;
    
    forr(i,1,4){
        for(int j = 1;j<= n/j;j++){
            if(n%j == 0){
                a[i] = (a[i]+lucas(n,j,pri[i]))%pri[i];
                if(n/j!=j) a[i] = (a[i] +lucas(n,n/j,pri[i]))%pri[i];
            }
        }
    }
    int x = crt();
    cout << qmi(g,x,999911659);
    return 0;
}

10230 「一本通 6.6 练习 1」牡牛和牝牛

设有 x x x 头公牛 那么牛的数量满足 ( x − 1 ) ∗ k + x < = N (x-1)*k+x <=N (x1)k+x<=N
得到公牛的数量最多为 ( N + k ) / ( k + 1 ) (N+k)/(k+1) (N+k)/(k+1)
易知 x x x 头公牛必定有 ( x − 1 ) ∗ k (x-1)*k (x1)k头母牛,那么公牛所在的位置的方案数为 C N − ( x − 1 ) ∗ k x C_{N-(x-1)*k}^{x} CN(x1)kx
故总方案数为 a n s = ∑ i = 1 ( N + k ) / ( k + 1 ) C N − ( i − 1 ) ∗ k i ans = \sum_{i=1}^{(N+k)/(k+1)}C_{N-(i-1)*k}^{i} ans=i=1(N+k)/(k+1)CN(i1)ki

namespace CNM {//组合数板子
    const int N = 2e6 + 5;
    ll quick(ll x, ll n)
    {
        ll res = 1;
        while (n)
        {
            if (n & 1) res = (res*x) % mod;
            x = x * x%mod;
            n >>= 1;
        }
        return res;
    }
    ll inv(ll x) { return quick(x, mod - 2); }
    ll fac[N], invfac[N];
    void init()
    {
        fac[0] = 1;
        for (int i = 1; i < N; ++i) fac[i] = (fac[i - 1] * i) % mod;
        invfac[N - 1] = inv(fac[N - 1]);
        for (int i = N - 2; i >= 0; --i) invfac[i] = (invfac[i + 1] * (i + 1)) % mod;
    }
    ll C(int n, int m)
    {
        if (n < m || m < 0) return 0;
        return fac[n] * invfac[m] % mod*invfac[n - m] % mod;
    }
}

int n,k;
signed main()
{
    CNM::init();
    cin>>n>>k;
    
    int num = (n+k)/(k+1);
    int res = 0;
    forr(i,1,num){
        res = (res +  CNM::C(n-(i-1)*k,i))%mod;
    }
    cout << ++res <<endl;

    return 0;
}

10231 「一本通 6.6 练习 2」方程的解

大意
k k k 个数相加来表示 g ( x ) = x x % 1000 g(x) = x^x \% 1000 g(x)=xx%1000
考虑到球盒模型
即用 g ( x ) g(x) g(x) 个相同的球放入不同的盒子里没有空盒的方案数为 C g ( x ) − 1 k − 1 C_{g(x)-1}^{k-1} Cg(x)1k1
数据比较大需要上大数

ll qmi(ll x,ll n,ll q){
    ll res = 1;
    while(n){
        if(n&1) res  = (res*x)%q;
        x =  (x*x)%q;
        n >>= 1;
    }
    return res;
}

typedef BigInteger bign;
bign f[1010][110];
signed main()
{
    _orz;
    int k,x;cin>>k>>x;
    int g = qmi(x,x,1000);
    
    for(int i = 0;i <= 1000;i++)for(int j = 0;j <= i;j++){
        if(!j) f[i][j] = 1;
        else f[i][j] = f[i-1][j]+f[i-1][j-1];
    }
    
    cout << f[g-1][k-1];
    return 0;
}

10232. 「一本通 6.6 练习 3」车的放置

考虑为一个完整的矩形长宽为 x , y x,y x,y 这样的矩形可以放 k k k个棋子的方案数为 C x k A y k C_x^kA_y^k CxkAyk
考虑到本题就是下面一个大矩形上面多出来了一个小矩形
首先必须先考虑小矩形放几个,因为小矩形会影响大矩形的放置
i i i 为在小矩形放置的个数那么总的方案数就为 ∑ i = 0 k C b i A a i C d k − i A a + c − i k − i % m o d \sum_{i=0}^{k}C_b^iA_a^iC_{d}^{k-i}A_{a+c-i}^{k-i}\%mod i=0kCbiAaiCdkiAa+ciki%mod

int fac[N << 1],invfac[N << 1];
int C(int n,int m)
{
    return n < m ? 0 : (long long)fac[n] * invfac[m] % mod * invfac[n - m] % mod;
}
void init()
{
	// i最大值为数据量
    fac[0]=invfac[0]=invfac[1]=1;
    for(int i=1;i<=2e6 + 10;i++)fac[i]=(long long)fac[i-1]*i%mod;
    for(int i=2;i<=2e6 + 10;i++)invfac[i]=(long long)(mod-mod/i)*invfac[mod%i]%mod;
    for(int i=2;i<=2e6 + 10;i++)invfac[i]=(long long)invfac[i-1]*invfac[i]%mod;
}

int A(int x,int y){
    if(x < y) return 0;
    int res = 1;
    while(y--){
        res = (res*x)%mod;
        x--;
    }
    return res%mod;
}


signed main()
{
    init();
    int a,b,c,d,k;cin>>a>>b>>c>>d>>k;
    int res = 0;
    for(int i = 0; i <= k;i++){
        res  = (res + C(b,i)*A(a,i)%mod*C(d,k-i)*A(a+c-i,k-i)%mod)%mod;
    }
    cout << res%mod << endl;
    return 0;
}

10234. 「一本通 6.6 练习 5」Combination

lucas 定理板子

10236. 「一本通 6.6 练习 7」超能粒子炮 · 改

lucas 定理太难嘞不会qwq
待补

10237. 「一本通 6.6 练习 8」礼物

扩展lucas定理板子

10238. 「一本通 6.6 练习 9」网格

10239. 「一本通 6.6 练习 10」有趣的数列

10240. 「一本通 6.6 练习 11」树屋阶梯

卡特兰数模型 C 2 n n − C 2 n n + 1 C_{2n}^n - C_{2n}^{n+1} C2nnC2nn+1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值