题目描述
多面体欧拉定理是指对于简单多面体,其各维对象数总满足一定的数学关系,在三维空间中多面体欧拉定理可表示为:
“顶点数-棱长数+表面数=2”。
正多面体,是指多面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角。
输入
一个正整数n表示有几组数据接下来n行输入正整数a;
输出
如果存在正a面体输出组成该正a面体的面是几边形
如果不存在输出“NO”
每个输出占一行
样例输入
3
4
5
6
样例输出
3
NO
4
提示
可以通过欧拉公式加角度大小推理
数据大小没有说哦
当用三角形时,3个面围成一个顶多
设面为a
a+3/3a=a3/2+2
解的a=4
当用三角形时,4个面围成一个顶多
设面为a
a+3/4a=a3/2+2
解的a=8
…
当用四边形时…
当用五边形时…
当用六边形时,两个构不成点,三个又变成了面,
…
来源
19计科马中会
仅有五种正多面体,正4,6,8,12,20面体
正4面体是由4个全等的等边3角形组成的;
正6面体是由6个全等的正方形组成的;
正8面体是由8个全等的等边3角形组成的;
正12面体是由12个全等的正5边形组成的;
正20面体是由20个全等的等边3角形组成的。(来源于网络)
#include <stdio.h>
#include <stdlib.h>
int main()
{
int n,a,i;
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&a);
switch(a)//输出正多面体各个面的边数
{
case 4:
printf("3\n");
break;
case 6:
printf("4\n");
break;
case 8:
printf("3\n");
break;
case 12:
printf("5\n");
break;
case 20:
printf("3\n");
break;
default:
printf("NO\n");
break;
}
}
return 0;
}