cnn学习笔记一

cnn概述(卷积神经网络)

卷积神经网络其实就是针对图像识别模拟人脑的一个神经网络

数据输入层:Input Layer
卷积计算层:CONV Layer
ReLU激励层:ReLU Incentive Layer
池化层:Pooling Layer
全连接层:FC Layer

数据输入层:Input Layer

其实就是对输入的数据进行预处理
预处理原因:
在这里插入图片描述
处理的方式:均值化处理、归一化操作、PCA降维、白化
可以参考链接

卷积层

我觉得需要记住的是:
(1)对局部感知
(2)卷积使得参数大大减小,计算量大大下降
(3)在卷积神经网络中,输入是一个多通道图像
卷积的计算过程演示演示

激励层

CNN中一般使用RELU函数作为激活函数.它的作用主要是将卷积层的输出结果做非线性映射
常见的激活函数
在这里插入图片描述

池化层

在连续的卷积层中间存在的就是池化层
我理解的池化层就是
(1)可以降低维度, 能够在一定程度上防止过拟合的发生
(2)减小空间尺寸来减小参数量和网络中的计算

全连接层

连接着之前的所有激活输出,通常情况下,在CNN中,FC层只会在尾部出现
通过全连接结构,将前面输出的特征重新组合成一张完整的图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值