cnn概述(卷积神经网络)
卷积神经网络其实就是针对图像识别模拟人脑的一个神经网络
数据输入层:Input Layer
卷积计算层:CONV Layer
ReLU激励层:ReLU Incentive Layer
池化层:Pooling Layer
全连接层:FC Layer
数据输入层:Input Layer
其实就是对输入的数据进行预处理
预处理原因:
处理的方式:均值化处理、归一化操作、PCA降维、白化
可以参考链接
卷积层
我觉得需要记住的是:
(1)对局部感知
(2)卷积使得参数大大减小,计算量大大下降
(3)在卷积神经网络中,输入是一个多通道图像
卷积的计算过程演示演示
激励层
CNN中一般使用RELU函数作为激活函数.它的作用主要是将卷积层的输出结果做非线性映射
常见的激活函数
池化层
在连续的卷积层中间存在的就是池化层
我理解的池化层就是
(1)可以降低维度, 能够在一定程度上防止过拟合的发生
(2)减小空间尺寸来减小参数量和网络中的计算
全连接层
连接着之前的所有激活输出,通常情况下,在CNN中,FC层只会在尾部出现
通过全连接结构,将前面输出的特征重新组合成一张完整的图像