LQBv33-Python:最多边数

该博客探讨了在含有2019个节点的有向图中,如何计算最多可以有的边数。根据无向图全连接的性质,边数是节点数乘以节点数减一再除以二,然后考虑到有向图是无向图边数的两倍,得出结论为2019*2018。这个问题涉及到图论的基本概念和计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2020-/Simulation_2/Python组/2.最多边数

【问题描述】
一个包含有2019个结点的有向图,最多包含多少条边?(不允许有重边)
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

解题思路:
有向图是无向图的两倍,求最多边数,就是全连接。
n个顶点的无向图中含有向边的数目最多为n*(n-1)/2
n个顶点的无向图中含有向边的数目为最少为(n-1)

代码:

if __name__ == '__main__':
    print(2019 * 2018)

运行结果:
在这里插入图片描述

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vicky__3021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值