设施优化布局分析
位置分配
基本原理
(1)空间位置对于一个设施的服务具有举足轻重的作用。合适的空间位置可以让零售店盈利、让公益设施提供更好的服务、让学校更容易到达等。
(2)ArcGIS“位置分配”的基本原理是:在给定需求和已有设施空间分布的情况下,在用户指定的系列候选设施选址中,让系统从中挑选出指定个数的设施选址,而挑选的原则是根据特定优化模型来的,挑选的结果是实现模型设定的优化万式,例如设施的可达性敢佳、设施的使用效率最高或设施的服务范围最广等。
(3)根据原理可以看出“位置分配”的基本过程包括:
*模拟服务需求的空间分布(例如居住区分布);
*模拟已有设施的空间分布;
*用户找出所有可能的设施候选位置;
*用户指定优化模型,并设置模型参数;
*系统自动挑选合适的设施选址;
*分析计算结果,必要的情况下进行调整后再次模拟分析
优化模型简洁
ArcGIS目前提供了6种典型的优化模型:最小化抗阻、最大化覆盖范围、最小化设施点数、最大化人流量、最大化市场份额、目标市场份额。下面分别介绍。
最小化抗阻模型
该模型的目标是在所有候选的设施选址中按照给定的数目挑选出设施的空间位置,使所有使用者到达距他最近设施的出行成本之和最短。其现实意义在于使出行代价最小化。下图为最小化抗阻模型(P-Median model)
图显示了运用该模型布局一个设施的情况,显然,设施被布局在所有使用者的重心位置。该模型也可用于挑选多个设施,在这种情况下,模型假定使用者只到距他最近的设施进行“消费”。此外,出行路径不仅需求点设施可以采用如图所示的空间直线路径,还可以采用更符合现实的实际出行路径。
由于该模型的最终目标是使得总出行路径最短,因而不可避免地会牺牲那些极少数位置偏远的用户,如图最右点所示。于是出于公平的考虑,又提出了受最大出行距离限制的最小化抗阻模型,它在上述模型的基础上加了一个限制条件,即所有用户到与之最近的设施的距离不得超过某一极限距离。该模型主要用于学校的优化布局。
最大化覆盖范围模型和最小化设施点数模型
最大化覆盖范围模型的目标是在所有候选的设施选址中挑选出给定数目的设施的空间位置,使得位于设施最大服务半径之内的设施需求点最多。与上述模型不同,它关注的是设施的最大覆盖问题(Maximum Covering Location Problem),至于设施需求点到设施的距离,它认为只要在半径之内,设施点就享受到了足够的服务,而不论距离的长短,如下图所示
该模型主要用于由政府出资建设的具有强制性服务半径限制的急救防灾等保障设施,例如急救中心、消防站等。很显然,倘若有足够的财力布置尽量多的设施,那么这些设施就能够在规定时间或距离内覆盖所有的消费者。但现在大多数城市所面临的主要问题是缺乏布局足够设施的财力,那么问题的关键就在于至少布置多少设施就可以覆盖绝大多数的需求者。该模型为政府选择财力能负担的设施数量提供了科学的依据。
该模型在运用时可能仍会有一些需求点在设施覆盖范围之外,这对于应急救火定非常不利的。因此,该模型也衍生出了受限的最大化覆盖范围模型。它在最大覆盖模型的基础上增加了一个限制条件:对于位于最大覆盖范围之外的需求点,它到与值最近的设施之间的距离也不得超过某一更大的范围。
最小化设施点数模型是最大化覆盖范围模型的改进型,其目标是在所有候选的设施选址中挑选出数目尽量少的设施,使得位于设施最大服务半径之内的设施需求点最多。也就是说,该模型自动在设施数量和最大化覆盖范围中计算平衡点,自动求得合适的设施数量和位置,而不需要用户指定设施数量。
最大化人流量模型
该模型的目标是在所有候选的设施选址中按照给定的数目挑选出设施的空间位置,使得设施被使用的可能性最大。该模型是建立在这样一个行为假设下的:使用者前去某设施进行消费的可能性随着出行距离的增加而减少。该模型的目标也即为通过使周边使用看便用该设施的可能性最大化,从而使该设施的服务效率最高。
该模型可用于那些选择使用或可被替代使用的设施,例如文化娱乐设施、商业服务设施、家政服务设施、体育场馆等,居民在能方便享用的情况下或许会使用它,否则就不会使用它。在这种情形下,争取更多的潜在消费者是这些设施得以生存的前提。因此,该模型就会将设施布局在潜在消费可能性最密集的区域,如下图所示。很显然该模型会更加忽视分散的偏远消费者。
最大化市场份额模型和目标市场份额模型
这两个模型主要用于竞争性设施点的布局问题,例如大型超市布局。在市场总份额一定的情况下,位置和设施状况对于争取更大的市场份额具有决定性的影响。
最大化市场份额模型的目标是在所有候选的设施选址中按照给定的数目挑选出设施的空间位置,使得当存在竞争性设施点时可最大化市场份额。
目标市场份额模型的目标是在所有候选的设施选址中自动挑选出合适数量的设施使得当存在竞争性设施点时可达到指定目标的市场份额。
上述两个模型都是建立在以下假设下的:
(1)总市场份额是所有能被服务到的需求点的需求的总和;
(2)当某个需求点位于多个设施点服务范围内时,该需求点的需求将被所有设施点瓜分。但是,权重大的设施(例如规模大)更有吸引力,因此能瓜分到更多的需求;同时距离近的设施,出行成本更低,能瓜分到更多的需求。
实验基础数据简介
本章将以消防站的布局选址为例,介绍“位置分配”的方法。研究区域仍然是第8章研究的某城市独立区域,该区域面积为15.2平方公里,总人口为29.6万人,现在仅有一所消防站。根据《城市消防规划建设管理规定》,“消防站的布局,应当以接到报警五分钟内消防队可以到达责任区边缘为原则,每个消防站责任区面积宜为四至七平方公里”,研究区域应有2~~4个消防站。究竟需要多少个消防站,其责任区如何划分,现试图通过最大化覆盖范围模型、最小化设施点数模型和最小化抗阻模型模拟分析之。但在分析之前,首先要对现实状态进行建模,建好的模型详见随书数据“chp09\练习数据\位置分配运算\消防站优化布局.mxd”。
道路网模型
本章直接利用上一章构建的路网模型,但是稍作改动。首先是行车时间,由于消防车具有道路优先权,同样路程的行车时间更短,我们把路段的行车时间缩短10%;其次是路口,消防车不受路口禁转的限制,也没有红灯等候时间;最后是没有单行线的限制。
火灾发生点模拟
理论上讲每一栋建筑都有发生火灾的可能,都应为潜在的火灾发生点,但这样建模工作就太大了。根据陈驰的研究,可根据地籍图将若干栋相邻建筑合并到一个消防基本单元中,然后用各单元的中心点代表该单元的火灾发生位置。
本实验将城市的火灾发生点简化成292个平均面积约为3.5公顷的消防基本单元。然后用各消防基本单元的中心点代表火灾发生位置。最后,根据各消防基本单元与城市道路的实际连接方位,用小路连接火灾发生位置和路网。经过这样的简化,误差基本控制在150米以内。模拟结果如下图所示。
消防站候选地址模型
本研究将消防站分为现有消防站和候选消防站两种,分两个要素类存放。所谓候选消防站是指用地条件允许的,供模型从中挑选的虚拟消防站。本次研究从城市空地中,挑选出面积大于2000平方米,紧靠城市干道的116个地块作为候选消防站。加上现存的一个消防站,总共117个候选消防站位置,如下图所示。
设施选址和位置分配运算
本实验首先使用最小化设施点数模型分配消防站,可以让系统自动计算出最少几个消防站可以基本满足要求,这里假设最终结果是N个。然后再用最大化覆盖范围模型,分别计算消防站个数为N-1、N、N+1个的选址情况。最后在分析计算结果的基础上确定合适的消防站个数。
使用最小化设施点数模型
步骤1:打开随书数据【chp09\练习数据\位置分配运算\消防站优化布局.mxd】,其中包含完整的交通网络模型、消防基本单元、火灾发生位置、现有消防站、候选消防站。
步骤2:启动分析工具。
点击【Network Analyst】工具条上的按钮【Network Analyst】(如果没显示【Net-work Analyst】工具条,可在任意工具条上单击右键,在弹出菜单中选择【Network Analyst】),在下拉菜单中选择【新建位置分配】,之后会显示【Network Analyst】面板,【内容列表】面板中也新添了【位置分配】图层,如下图所示(如果没有显示该面板,可点击工具条上的【显示/隐藏网络分析窗口】工具)。
步骤3:加载现有消防站。
在【Network Analyst】面板中,右键点击【设施点】项,在弹出菜单中选择【加载位置…】,显示【加载位置】对话框,如下图所示。将【加载自】栏设置为【现有消防站】。将【位置分析属性】栏【Facility Type】的【默认值】设置为【必选项】,意味着这些现有消防站是必选的消防站。点【确定】。
步骤4:加载候选消防站。
在【Network Analyst】面板中,还是右键点击【设施点】项,在弹出菜单中选择【加载位置…】,显示【加载位置】对话框。将【加载自】栏设置为【候选消防站】。将【Facility Type】的【默认值】设置为【候选项】,意味着这些消防站是候选设施点。点【确定】后,【Network Analyst】面板中出现这些设施点,如图所示。其中带五角星的【位置1】代表必选的设施点,其他都是候选设施点。
具体结果如下图所示
步骤5:加载火灾发生位置。
在【Network Analyst】面板中,右键点击【请求点】项,在弹出菜单中选择【加载位置…】。在【加载位置】对话框中将【加载自】栏设置为【火灾发生位置】。点【确定】
具体结果如下图所示:
步骤6:设置“位置分配”的属性。
点击【Network Analyst】面板右上角的【属性】按钮,显示【图层属性】对话框:
切换到【常规】选项卡。设置【图层名称】为【最小化设施点】。
切换到【分析设置】选项卡。选择【阻抗】为【车行时间(分钟)】。
切换到【高级设置】选项卡。选择【问题类型】为【最小化设施点数】,如下图所示。
将【阻抗中断】设为【4.3】,意味着设施的最大服务范围是4.3分钟车行时间(假设消防站从接到报警到上路需要40秒的准备时间,因此行车时间只允许4.3分钟)。
步骤7:位置分配求解。
点击【Network Analyst】工具条上的【求解】工具照,短暂运算后,结果如图所示。
步骤8:更改指向不同设施点的连线的颜色,以便于区分。
右键单击【内容列表】面板【最小化设施点】图层下的【线】,在弹出菜单中选择【属性…】,显示【图层属性】对话框。切换到【符号系统】选项卡,按照图9-11所示进行设置,点【确定】。更改符号显示之后的效果如下图所示。
从计算结果来看,模型自动选择了两个消防站,加上现有的一共三个。但是西部的消防站选址有些出乎预料,它的服务范围涵盖了西南狭长片的全部区域,而该区域从图面上看很多地方都离中部现有消防站更近。分析路网后发现,西部消防站服务该片区时主要通过横贯东西的过境公路,该公路路面宽、路况好、车速很快。相比之下,中部消防站要到达该区域只能通过比较拥堵的城市干道,耗时更长。因此,得到这个结果也就不难理解了。
使用最大化覆盖范围模型
上一小节使用最小化设施点数模型分配消防站,系统自动计算出最少3个消防站可以基本满足要求。接下来,我们用最大覆盖模型,分别计算当消防站个数为1、2、3、4个时的选址情况。1个消防站的情况也就是现状,主要用于对比优化效果。
步骤1:隐藏上一次分析的结果。
取消勾选【内容列表】面板的【最小化设施点】图层,这时分析结果都从图面上隐藏了起来。
步骤2:分析2点的最大化覆盖范围。
具体操作与上一小节步骤2~步骤7类似,这里就不重复了,只是在步骤5设置“位置分配”的属性的时候,将【图层名称】设为【2点最大化覆盖】,将【问题类型】设为【最大化覆盖范围】,【要选择的设施点】设为【2],如图所示。计算结果如图所示,我们可以看到东北角有一些火灾发生点没有被覆盖。
步骤3:类似地,分析1点的最大化覆盖范围、3点的最大化覆盖范围和4点的最大化覆盖范围。
可以看到1点的最大化覆盖漏掉了很多火灾发生位置,3点最大化和最小化设施的分析结果是一样的,而4点的最大化覆盖范围可以无一遗漏地覆盖所有火灾发生位置,其结果最为理想,但建设和运营消防站需要更多的成本。
下图显示的是1个消防站的最大化覆盖分配结果
下图显示的是2个消防站的最大化覆盖分配结果
下图显示的是3个消防站的最大化覆盖分配结果
下图显示的是4个消防站的最大化覆盖分配结果
分配结果的深入分析
前面以图形的方式直观显示了布局1、2、3、4个消防站的结果,但是要确定究竟布局几个消防站还需要更多的数据支撑。为此,我们需要查看分析结果的数据表。以4点最大化覆盖范围为例,查询步骤为:
步骤1:切换到【4点最大化覆盖】分析结果。
在【Network Analyst】面板中点击顶部的下拉箭头,从列表中选择【4点最大化覆盖】,如图所示。
步骤2:查看选中的设施点的属性。
在【Network Analyst】面板中,展开【设施点】项,从中选择标记有黑星号或白星号的项目(黑星号代表已选项,白星号代表必选项,具体颜色参见【内容列表】中的图层符号),右键点击它,在弹出菜单中选择【属性…】,显示【属性】对话框,如图所示。我们从中获取这样两个关键信息:【DemandCount】代表覆盖范围内的需求点总数,【Total_车行时间】代表设施点到达覆盖范围内的各个需求点的行车时间总和。将这两个数据登记到表。
步骤3:类似地查看并记录布局1、2、3个消防站的结果。表9-2汇总了所有结果,以数字的方式反映了优化布局情况。
对上述数据进行分析如下:
现实只有一个消防站的情况下,5分钟内只能到达292个潜在火灾发生点中的223个,平均耗时2.8分钟,覆盖率为76.4%。目前存在较大的消防隐患。
当布局两个消防站时已能覆盖97.6%的潜在火灾发生点,较之一个消防站的情况,覆盖面有大幅提升。到达能被覆盖的火灾发生点的平均时间减少为2.4分钟,与一个消防站相比时间有大幅缩短。两个消防站服务的火灾发生点个数分别为147个和138个,基本相当。因此,布局两个消防站已基本能满足要求。
当布局三个消防站时,火灾发生点的覆盖率进一步提高到100%,到达能被覆盖的火灾发生点的平均时间有小幅缩小,减少到2.2分钟。三个消防站服务的火灾发生点个数分别为134个、100个和58个,两大一小。因此,三个消防站已能够全面满足要求。
当布局四个消防站时,火灾发生点仍然是全覆盖,而到达能被覆盖的火灾发生点的平均时间大幅缩小到1.8分钟。显然,布局四个消防站有点浪费。
通过模拟可以得出如下结论:在经费紧张的情况下,通过合埋巾同,网个规候为大蚁相同的一级消防站已基本能满足要求。若布置三个消防站,则可完全覆盖全部区域。在规模上可两大一小,即两个一级消防站,一个二级消防站。至于布置四个消防站,完全没有必要。
服务区划分和再分配
消防站服务区划分
上述模拟没有考虑到管理上的要求,各个消防站的服务区边界比较零碎,且相互穿插。从管理方便的角度出发,应划定更为清晰的服务区边界。以布局三个消防站为例,根据之前的分析结果,可以划定各自的服务区范围如图所示。
消防站再选址
从理论上分析,当消防站数量不能满足实际需求时,优化布局的重点是最大覆盖问题;而当布局3个消防站,能充分满足实际需求时,重点应转移到提高服务效率、缩短出勤时间上来,即转变为受最大出行距离限制的最小化抗阻问题。因此,最佳解决办法是将两类模型结合起来。首先通过最大化覆盖范围模型研究适宜的设施数量、规模和责任区范围;然后,用受最大出行距离限制的最小化抗阻模型对每个消防责任区求得使总出勤距离最短的设施位置。
具体求解步骤如下:
步骤1:加载【chp09\练习数据\服务区划分和再分配\消防站再选址.mxd】,其中包含一个【3点最大化覆盖】图层和【消防站服务区】图层。
步骤2:启动并设置分析属性。
(1)点击【Network Analyst】工具条上的按钮【Network Analyst】,在下拉菜单中选择【新建位置分配】
(2)点击【Network Analyst】面板右上角的【属性】按钮回,显示【图层属性】对话框。将【图层名称】设为【西片消防站】,将【问题类型】设为【最小化阻抗】,【要选择的设施点】设为【1),【阻抗中断】设为【4.3】,如图所示。
步骤3:加载西片消防站服务区内的火灾发生点。
(1)使用选择要素工具,选择【消防站服务区】要素类的西片消防站服务区。
(2)点击菜单【选择】【按位置选择…】,显示【按位置选择】对话框。按图所示进行设置:
(3)将【选择方法】设置为【从以下图层中选择要素】。
(4)勾选【目标图层】栏下的【火灾发生位置】。
(5)将【源图层】设置为【消防站服务区】。
(6)勾选【使用所选要素】
(7)点【确定】。短暂计算后,位于所选西片消防站服务区内的火灾发生点均被选中如图所示。
(8)右键点击【Network Analyst】面板中的【请求点】,在弹出菜单中选择【加载位置…】,显示【加载位置】对话框。将【加载自】设为【火灾发生位置】,并确定勾选了【仅加载选定行】。这意味着只有上一步骤中被选中的【火灾发生位置】元素才会被加载。点【确定】。最终加载了131个火灾发生位置。
步骤4:加载候选消防站。
在【Network Analyst】面板中,右键点击【设施点】项,在弹出菜单中选择【加载位置…】,显示【加载位置】对话框。将【加载自】栏设置为【候选消防站】。点【确定】
步骤5:位置分配求解。
点击【Network Analyst】工具条上的【求解】工具,短暂运算后,结果如图9-24所示。求得一个消防站选址。在【Network Analyst】面板中,查看该设施点的属性发现所有131个火灾发生位置均在4.3分钟内被覆盖。
步骤6:类似地求得东片消防站的选址。
以下为所有过程图
本章小结
城市规划经常会涉及设施空间优化布局的问题。ArcGIS“位置分配”工具提供了强大的空间优化配置功能,它能在给定需求和已有设施空间分布的情况下,在用户指定的系列候选设施选址中,根据特定的优化配置模型,挑选出合适数量和合适位置的设施.
由于不同类型的设施其优化的方式有很大差别,例如有的设施要求可达性最佳,有的要求使用效率最高,有的要求服务范围最广,有的要求市场占有量最大等。为此,ArcGIS提供了6种典型的优化模型:最小化抗阻、最大化覆盖范围、最小化设施点数、最大化人流量、最大化市场份额、目标市场份额。
本章以消防站的选址布局为例,介绍了ArcGIS“位置分配”的使用方法和技巧。分析的基本过程为:①模拟服务需求的空间分布;②模拟已有设施的空间分布;③用户找出所有可能的设施候选位置;④用户指定优化模型,并设置模型参数;⑤系统自动挑选合适的设施选址;⑥分析计算结果,必要的情况下进行调整后再次模拟。
写文小结
第三篇记录完成,文章若出现缺少和不足之处,欢迎大家在评论区留言,补充本文不足之处,互相学习交流,在此共勉。