SPSS之双独立样本的T检验

双独立样本的T检验

是指在两个样本相互独立的前提下,检验两个样本的总体均数(两个样本各自归属的总体的平均数,如果两样本均数不存在显著差异,那么可以认为两个样本来自同一个总体)是否存在了显著性差异。它的零假设(即想要证明错误的假设、否定预期结果的假设)为不存在显著性差异。

同样还以我的实验报告为例

数据操作过程:

第一步:定义变量,因为这次我们是双样本,所以我们要定义一个Group,并给这个变量设置值

 

第二步:录入数据

### 样本t检验与配对样本t检验的区别 #### 区别 样本t检验独立样本t检验)用于评估来自个不同群体的数据均值是否存在显著差异。这个群体应相互独立,即一个群体中的观测值不应影响另一个群体中的观测值[^3]。 相比之下,配对样本t检验专门针对同一组对象在种条件下获得的套数据进行分析。这种情况下,每一对观察值都是关联的,比如同一个人在接受某种治疗前后的血压读数。因此,该测试能够更精确地控制个体间的变异因素[^2]。 #### 应用场景 对于样本t检验而言,当研究者希望比较完全不相关的个群组间某变量平均值得时候会采用此法。例如,在医学领域中对比新药和安慰剂的效果;教育界里衡量种教学方法对学生成绩的影响等情形下都适合运用这种方法来判断者之间是否存在统计意义上的差距[^1]。 而配对样本t检验则更多应用于实验设计中有自然匹配关系的情况或是纵向研究设置内——也就是同一个体被多次测量的情景之下。典型例子包括临床试验里的基线特征与干预措施实施之后的变化情况对照;市场调研方面关于消费者态度转变的研究等等[^4]。 ```python import scipy.stats as stats # 假设data_before 和 data_after 是配对样本的数据集 paired_t_statistic, paired_p_value = stats.ttest_rel(data_before, data_after) print(f'Paired T-test statistic: {paired_t_statistic}, P-value: {paired_p_value}') ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜努力码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值