概念
独立样本t检验(Independent Samples t-Test),也称为两样本t检验或两独立样本t检验,是一种统计方法,用于比较两个独立样本组的平均值是否有显著差异。这种检验通常用于检验两个独立样本的均值差异是否具有统计学意义,即判断两个样本是否来自具有相同均值的总体。
独立样本t检验的基本假设包括:
- 独立性:两个样本必须是独立的,即一个样本中的数据不影响另一个样本中的数据。
- 正态分布:每个样本的数据应该近似正态分布。对于大样本,这个假设可以放宽。
- 方差齐性:两个样本的方差应该相等,即两个总体的方差相同。
形式
- 单尾检验:当研究者只关心一个方向上的效应时使用,即只检验一个样本的均值是否显著大于或小于另一个样本的均值。
- 双尾检验:当研究者对两个方向上的效应都感兴趣时使用,即检验两个样本的均值是否有显著差异,无论是大于还是小于。
计算独立样本t检验的统计量时,会考虑样本均值的差异、样本的标准差以及样本大小。如果计算出的t值大于t分布表中的临界值(根据自由度和显著性水平确定),则认为两个样本的均值差异具有统计学意义。
独立样本t检验广泛应用于社会科学、生物医学、心理学等领域,用于比较不同群体之间的平均差异。
举例
假设我们想要研究某种新药是否对降低血压有效果。我们随机选取了两组患者,一组为实验组(服用新药&#x