线代代数考研复习

行列式的计算

    定理:不同行(列)元素乘对应不同行(列)代数余子式之和为0

   |A|是n阶行列式,若其中一行(列)全是1,则该行列式

     全部元素的代数余子式之和等于该行列式的值

 克拉默法则

   若n个方程n各未知数的线性方程组

        eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20a_%7B11%7Dx_1+a_%7B12%7Dx_2+......+a_%7B1n%7Dx_n%3Db_1%5C%5C%20a_%7B21%7Dx_1+a_%7B22%7Dx_2+......+a_%7B2n%7Dx_n%3Db_2%5C%5C%20.%5C%5C.%5C%5C%20a_%7Bn1%7Dx_1+a_%7Bn2%7Dx_2+......+a_%7Bnn%7Dx_n%3Db_n%5C%5C%20%5Cend%7Bmatrix%7D%5Cright.

     的系数行列式D不为0

        eq?x_i%3D%5Cfrac%7BD_i%7D%7BD%7D       eq?D_i为将第i列换为b所构成的行列式的值

     eq?A%5E*%3D%7CA%7CA%5E%7B-1%7D%2C%28A%5E*%29%5E*%3D%28%7CA%7CA%5E%7B-1%7D%29%5E*%3D%28%7C%7CA%7CA%5E%7B-1%7D%7C%29%28%7CA%7CA%5E%7B-1%7D%29%5E%7B-1%7D%3D%7CA%7C%5E%7Bn-1%7D%5Cfrac%7BA%7D%7B%7CA%7C%7D%3D%7CA%7C%5E%7Bn-2%7DA

 


        eq?%7CA%7C%3Da%2C%5Cbegin%7Bvmatrix%7D%20A%20%26%20%5Calpha%20%5C%5C%20%5Cbeta%20%5ET%20%26%20b%20%5Cend%7Bvmatrix%7D%20%3D0,则eq?%5Cbegin%7Bvmatrix%7D%20A%20%26%20%5Calpha%20%5C%5C%20%5Cbeta%20%5ET%20%26%20c%20%5Cend%7Bvmatrix%7D

        eq?%5Cbegin%7Bvmatrix%7D%20A%20%26%20%5Calpha%20%5C%5C%20%5Cbeta%20%5ET%20%26c%20%5Cend%7Bvmatrix%7D%3D%5Cbegin%7Bvmatrix%7D%20A%20%26%20%5Calpha%20+0%5C%5C%20%5Cbeta%20%5ET%20%26b+c-b%20%5Cend%7Bvmatrix%7D%20%3D%5Cbegin%7Bvmatrix%7D%20A%20%26%20%5Calpha%20%5C%5C%20%5Cbeta%20%5ET%20%26b%20%5Cend%7Bvmatrix%7D+%20%5Cbegin%7Bvmatrix%7D%20A%20%26%200%20%5C%5C%20%5Cbeta%20%5ET%20%26c-b%20%5Cend%7Bvmatrix%7D%3Da%28c-b%29

        

   三对角行列式的计算

        eq?D_n%3D%5Cbegin%7Bvmatrix%7D%20a%20%26b%20%260%20%26...%260%20%260%5C%5C%20c%26%20a%20%26b%20%26%20...%20%260%20%260%20%5C%5C%200%26c%20%26a%20%26...%20%260%20%26%200%20%5C%5C%20%3A%26%3A%20%26%20%3A%26%20%26%20%3A%26%3A%5C%5C%200%26%200%20%26%200%26...%20%26a%20%26b%20%5C%5C%200%26%200%20%26%200%26...%20%26c%20%26a%20%5Cend%7Bvmatrix%7D

        行列式展开

        eq?D_n%3DaD_%7Bn-1%7D-b%5Cbegin%7Bvmatrix%7D%20c%20%26b%20%26%20...%20%260%20%260%20%5C%5C%200%20%26a%20%26...%20%260%20%26%200%20%5C%5C%20%3A%26%3A%20%26%20%3A%26%20%26%20%3A%5C%5C%200%20%26%200%26...%20%26a%20%26b%20%5C%5C%200%20%26%200%26...%20%26c%20%26a%20%5Cend%7Bvmatrix%7D%3DaD_%7Bn-1%7D-bcD_%7Bn-2%7D

        构造二次方程:eq?x%5E2-ax+bc%3D0

        解出两实根:eq?%5Calpha%20%2C%5Cbeta

           (1) eq?%5Calpha%20%5Cneq%20%5Cbeta,则eq?D_n%3Dx_n%3DA%5Calpha%20%5En+B%5Cbeta%20%5En

           (2)eq?%5Calpha%20%3D%20%5Cbeta,则eq?D_n%3Dx_n%3D%28A+Bn%29%5Calpha%20%5En

        根据eq?D_1%3Da%2CD_2%3Da%5E2-bc%5CRightarrow%20A%2CB
 

已知三阶方阵A的特征值为1,-2,-3,则A

的行列式|A|中元素eq?a_%7B11%7D%2Ca_%7B22%7D%2Ca_%7B33%7D得代数余子式

得和eq?A_%7B11%7D+A_%7B22%7D+A_%7B33%7D

      eq?A%5E*%3D%7CA%7CA%5E%7B-1%7D%2C%5Clambda%20_%7BA%5E*%7D%3D%5Cfrac%7B%7CA%7C%7D%7B%5Clambda%20_A%7D

      eq?A_%7B11%7D+A_%7B22%7D+A_%7B33%7D%3D%5Csum%20%5Clambda%20_%7BA%5E*%7D%3D-5

   

矩阵

  初等矩阵

  经过一次初等变换得到的矩阵

  正交矩阵

   AA^T=A^TA=E,|A|^2=1

   正交矩阵得行里向量长度均为1,行列向量均正交

定理

  1. n阶矩阵A可逆=>A与单位矩阵等价

  2. 矩阵A,B等价得充分必要条件是存在可逆矩阵

      P,Q使得PAQ=B

   A,B可以互相线性表示

  对于AB=C,若A是m*n矩阵,B是n*s矩阵

        ①对B,C按行分块

          eq?%5Cbegin%7Bbmatrix%7D%20a_%7B11%7D%20%26a_%7B12%7D%20%26...%20%26a_%7B1n%7D%20%5C%5C%20a_%7B21%7D%20%26a_%7B22%7D%20%26...%20%26a_%7B2n%7D%20%5C%5C%20%3A%26%20%3A%20%26%20%26%3A%20%5C%5C%20a_%7Bm1%7D%20%26a_%7Bm2%7D%20%26...%20%26a_%7Bmn%7D%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%20%5Cbeta%20_1%5C%5C%20%5Cbeta%20_2%5C%5C%20%3A%5C%5C%5Cbeta%20_n%20%5Cend%7Bbmatrix%7D%20%3D%5Cbegin%7Bbmatrix%7D%20%5Calpha%20_1%5C%5C%20%5Calpha%20_2%5C%5C%20%3A%5C%5C%20%5Calpha%20_m%20%5Cend%7Bbmatrix%7D

  有

        eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20a_%7B11%7D%5Cbeta%20_1+a_%7B12%7D%5Cbeta%20_2+...+a_%7B1n%7D%5Cbeta_n%3D%5Calpha%20_1%5C%5C%20a_%7B21%7D%5Cbeta%20_1+a_%7B22%7D%5Cbeta%20_2+...+a_%7B2n%7D%5Cbeta_n%3D%5Calpha%20_2%5C%5C%20%3A%5C%5C%20a_%7Bm1%7D%5Cbeta%20_1+a_%7Bm2%7D%5Cbeta%20_2+...+a_%7Bmn%7D%5Cbeta_n%3D%5Calpha%20_m%20%5Cend%7Bmatrix%7D%5Cright.

   可知C的行向量可由B的行向量线性表示

        ②对矩阵A,C按列分块

        eq?%5Cbegin%7Bbmatrix%7D%20%5Cgamma%20_1%2C%20%5Cgamma%20_2%2C...%20%5Cgamma%20_n%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20b_%7B11%7D%20%26b_%7B12%7D%20%26...%20%26b_%7B1s%7D%20%5C%5C%20b_%7B21%7D%20%26b_%7B22%7D%20%26...%20%26b_%7B2s%7D%20%5C%5C%20%3A%26%20%3A%20%26%20%26%3A%20%5C%5C%20b_%7Bn1%7D%20%26a_%7Bn2%7D%20%26...%20%26a_%7Bns%7D%20%5Cend%7Bbmatrix%7D%20%3D%5Cbegin%7Bbmatrix%7D%20%5Cdelta%20_1%2C%5Cdelta%20_2%2C...%5Cdelta%20_s%20%5Cend%7Bbmatrix%7D

  有

       eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20b_%7B11%7D%5Cgamma%20_1+b_%7B12%7D%5Cgamma%20_2+...+b_%7B1s%7D%5Cgamma_n%3D%5Cdelta%20_1%5C%5C%20b_%7B21%7D%5Cgamma%20_1+b_%7B22%7D%5Cgamma%20_2+...+b_%7B2s%7D%5Cgamma_n%3D%5Cdelta%20_2%5C%5C%20%3A%5C%5C%20b_%7Bn1%7D%5Cgamma%20_1+b_%7Bn2%7D%5Cgamma%20_2+...+b_%7Bns%7D%5Cgamma_n%3D%5Cdelta%20_s%20%5Cend%7Bmatrix%7D%5Cright.

  可知C的列向量可由A的列向量线性表示

矩阵运算

   由AB=AC,A≠O不能得出B=C

eq?%5Calpha%20%5Cbeta%5ETeq?%5Calpha%20%5ET%5Cbeta

   1. eq?%5Calpha%20%5ET%5Cbeta是矩阵eq?%5Calpha%20%5Cbeta%5ET的主对角线之和

   2. 对于A=eq?%5Calpha%20%5Cbeta%5ETeq?A%5En%3Dl%5E%7Bn-1%7DA%2Cl%3D%5Csum%20a_%7Bii%7D

   3. eq?r%28A%5E*%29%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20n%20%26r%28A%29%3Dn%20%5C%5C%201%20%26%20r%28A%29%3Dn-1%5C%5C%200%26r%28A%29%3Cn-1%20%5Cend%7Bmatrix%7D%5Cright.

行最简矩阵

   非零行的主元都是1,且主元所在列其他元素都是0

   

设A是三界可逆矩阵,把A得第一列倍加到第二列

得到B,B*可由

 eq?AE_%7B12%7D%282%29%3DB%2CB%5E*%3D%7CB%7CB%5E%7B-1%7D%3D%7CA%7CE%5E%7B-1%7D_%7B12%7D%282%29A%5E%7B-1%7D%3DE_%7B12%7D%28-2%29A%5E*

eq?E_%7Bij%7D%28k%29相当于将第i列得k倍加到第j列或者

第j行得k倍加到第i列

eq?E%5E%7B-1%7D_%7Bij%7D%28k%29%3DE_%7Bij%7D%28-k%29%2CE%5E%7B-1%7D_%7Bi%7D%28k%29%3DE_%7Bi%7D%28%5Cfrac%7B1%7D%7Bk%7D%29


已知A,B均为n阶矩阵,且E-AB可逆

证明:E-BA可逆

   ①因为E-AB可逆,故存在可逆矩阵设为C

   有        C(E-AB)=E

              C-CAB=E

   同时左乘B右乘A

   有        BCA-BCABA=BA

              (BCA+E)(E-BA)=E

   故E-BA存在可逆矩阵为

        BCA+E

   ②初等变换

        eq?%5Cbegin%7Bpmatrix%7D%20E%20%26%20A%5C%5C%20B%20%26%20E%20%5Cend%7Bpmatrix%7D%5CRightarrow%20%5Cbegin%7Bpmatrix%7D%20E%20%26%20A%5C%5C%20O%20%26%20E-AB%20%5Cend%7Bpmatrix%7D

        eq?%5Cbegin%7Bpmatrix%7D%20E%20%26%20A%5C%5C%20B%20%26%20E%20%5Cend%7Bpmatrix%7D%5CRightarrow%20%5Cbegin%7Bpmatrix%7D%20E-BA%20%26%20O%5C%5C%20B%20%26%20E%20%5Cend%7Bpmatrix%7D

   E-AB可逆所以E-BA也可逆

线性方程组

  1. 任何部分组相关则整体组相关

     整体组无关则任何部分组无关

   2. 向量组线性无关,则其延伸组无关

       向量组线性相关,其缩短组必相关

   3. 向量组eq?%5Calpha%20_1%2C%5Calpha%20_2%2C...%5Calpha%20_s线性无关

      eq?%5Calpha%20_1%2C%5Calpha%20_2%2C...%5Calpha%20_s%2C%5Cbeta线性相关

     则,eq?%5Cbeta可由eq?%5Calpha%20_1%2C%5Calpha%20_2%2C...%5Calpha%20_s线性表示,且表示法唯一

   4. 向量组eq?%5Calpha%20_1%2C%5Calpha%20_2%2C...%5Calpha%20_s,可由向量组eq?%5Cbeta%20_1%2C%5Cbeta%20_2%2C...%5Cbeta%20_t

       线性表出,且s>t,那么eq?%5Calpha%20_1%2C%5Calpha%20_2%2C...%5Calpha%20_s必线性相关

    推论:

        ①eq?%5Calpha%20_1%2C%5Calpha%20_2%2C...%5Calpha%20_s线性无关,它可由eq?%5Cbeta%20_1%2C%5Cbeta%20_2%2C...%5Cbeta%20_t

        线性表出,则s≤t

        ②n个向量最多可以表示的线性无关的向量个数为n

        ③n+1个n维向量必线性相关

   向量空间

      方程组的极大线性无关组即为向量空间V的基底

      基中所含向量个数称为向量空间V的维数

     规范正交基

        一组基满足基中向量长度均为1,两两正交

设A为实矩阵,且eq?A_%7Bij%7D%3D-a_%7Bij%7D,eq?a_%7B22%7D%3D-1

eq?%7CA%7C%3D-1,则方程组

eq?A%5Cbegin%7Bbmatrix%7D%20x_1%5C%5C%20x_2%5C%5C%20x_3%20%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%200%5C%5C2%5C%5C%200%20%5Cend%7Bbmatrix%7D

   eq?%7CA%7C%3D-1%3D-a%5E2_%7B21%7D-a%5E2_%7B22%7D-a%5E2_%7B23%7D%5CRightarrow%20a_%7B21%7D%3Da_%7B23%7D%3D0

   eq?A_%7Bij%7D%3D-a_%7Bij%7D%5CRightarrow%20A%5E*%3D-A%5ET

   eq?A%5E*A%5Cbegin%7Bbmatrix%7D%20x_1%5C%5C%20x_2%5C%5C%20x_3%20%5Cend%7Bbmatrix%7D%3D-A%5ET%5Cbegin%7Bbmatrix%7D%200%5C%5C2%5C%5C%200%20%5Cend%7Bbmatrix%7D%5CRightarrow%20%5Cbegin%7Bbmatrix%7D%20x_1%5C%5C%20x_2%5C%5C%20x_3%20%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%200%5C%5C%20-2%5C%5C%200%20%5Cend%7Bbmatrix%7D


设A,B均为n阶方阵,则方程组Ax=0,Bx=0

有非零公共解的充分条件

eq?%5Cbegin%7Bbmatrix%7D%20A%5C%5C%20B%20%5Cend%7Bbmatrix%7Dx%3D0,所以eq?r%28%5Cbegin%7Bbmatrix%7D%20A%5C%5C%20B%20%5Cend%7Bbmatrix%7D%29%3Cn

特征值与特征向量

    1. 设A,B都是n阶矩阵,若果存在可逆矩阵P

        使得        P^-1AP=B,则A与B相似

     2. 若eq?%5Calpha%20_1%2C%5Calpha%20_2是A的不同特征值的特征向量,则

                eq?%5Calpha%20_1+%5Calpha%20_2不是A的特征向量

     3. n阶方阵A可对角化的充分必要条件是

         A有n个线性无关的特征向量

     4. n阶方阵A可对角化的充分必要条件是其每个特征值

         线性无关的特征向量个数等于特征值重数

     5. 实对称矩阵比可对角化

         不同特征值对应特征向量必正交

施密特正交化

   eq?%5Cbeta%20_1%3D%5Calpha%20_1

   eq?%5Cbeta%20_2%3D%5Calpha%20_2-%5Cfrac%7B%28%5Calpha%20_2%2C%5Cbeta%20_1%29%7D%7B%28%5Cbeta%20_1%2C%5Cbeta%20_1%29%7D%5Cbeta%20_1

   eq?%5Cbeta%20_2%3D%5Calpha%20_3-%5Cfrac%7B%28%5Calpha%20_3%2C%5Cbeta%20_1%29%7D%7B%28%5Cbeta%20_1%2C%5Cbeta%20_1%29%7D%5Cbeta%20_1-%5Cfrac%7B%28%5Calpha%20_3%2C%5Cbeta%20_2%29%7D%7B%28%5Cbeta%20_2%2C%5Cbeta%20_2%29%7D%5Cbeta%20_2

相似矩阵

   如果eq?P%5E%7B-1%7DAP%3DB%2CA%5Calpha%20%3D%5Clambda%20%5Calpha%20%2C%5Calpha%20%5Cneq%200

   eq?B%28P%5E%7B-1%7D%5Calpha%20%29%3D%28P%5E%7B-1%7DAP%29%28P%5E%7B-1%7D%5Calpha%20%29%3DP%5E%7B-1%7DA%5Calpha%20%3D%5Clambda%20%28P%5E%7B-1%7D%29%5Calpha 

已知三阶矩阵A满足|A-E|=|A-2E|=|A+E|=a

当a=2时,求行列式|A+3E|的值

eq?f%28%5Clambda%20%29%3D%7C%5Clambda%20E-A%7C%2Cg%28%5Clambda%29%3Df%28%5Clambda%29+2

eq?g%281%29%3Df%281%29+2%3D%7CE-A%7C+2%3D0

eq?g%282%29%3Df%282%29+2%3D%7C2E-A%7C+2%3D0

eq?g%28-1%29%3Df%28-1%29+2%3D%7C-E-A%7C+2%3D0

所以eq?g%28%5Clambda%29%3D%28%5Clambda-1%29%28%5Clambda-2%29%28%5Clambda+1%29

eq?f%28%5Clambda%29%3Dg%28%5Clambda%29-2%3D%5Clambda%28%5Clambda%5E2-2%5Clambda-1%29

解得eq?A得特征值为eq?0%2C1+%5Csqrt%7B2%7D%2C1-%5Csqrt2

所以eq?%7CA+3E%7C%3D42

eq?


设A是三阶方阵,eq?%5Calpha时=是三维列向量若eq?%5Calpha%20%2CA%5Calpha%2CA%5E2%5Calpha

线性无关,且满足eq?A%5E3%5Calpha%20-2A%5E2%5Calpha%20-A%5Calpha%20+2%5Calpha%20%3D0

(1)求A的特征值

 eq?A%5Cbegin%7Bbmatrix%7D%20%5Calpha%20%26A%5Calpha%20%26A%5E2%5Calpha%20%5Cend%7Bbmatrix%7D%20%3D%5Cbegin%7Bbmatrix%7D%20%5Calpha%20%26A%5Calpha%20%26A%5E2%5Calpha%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%200%20%260%20%26-2%20%5C%5C%201%20%260%20%261%20%5C%5C%200%20%261%20%262%20%5Cend%7Bbmatrix%7D

eq?%7C%5Clambda%20E-B%7C%3D%5Cbegin%7Bbmatrix%7D%20%5Clambda%20%260%20%262%20%5C%5C%20-1%26%5Clambda%20%26-1%20%5C%5C%200%26-1%20%26%5Clambda-2%20%5Cend%7Bbmatrix%7D%20%3D%28%5Clambda+1%29%28%5Clambda-1%29%28%5Clambda-2%29

(2)A的特征向量

eq?%5Clambda是B的一个特征值,eq?%5Cxi是相应的特征向量

eq?P%3D%5Cbegin%7Bbmatrix%7D%20%5Calpha%20%26A%5Calpha%20%26A%5E2%5Calpha%20%5Cend%7Bbmatrix%7D

eq?A%28P%5Cxi%29%3DPBP%5E%7B-1%7D%28P%5Cxi%29

所以eq?P%5Cxi是A的特征向量

对于Beq?%5Clambda%20_1%3D-1%2C%5Cxi%20_1%3D%5B2%2C-3%2C1%5D%5ET

eq?%5Clambda%20_2%3D1%2C%5Cxi%20_2%3D%5B-2%2C-1%2C1%5D%5ET

eq?%5Clambda%20_3%3D-2%2C%5Cxi%20_3%3D%5B-1%2C0%2C1%5D%5ET

所以A对应的特征向量eq?P%5Cxi


eq?A%3D%5Cbegin%7Bbmatrix%7D%202%20%260%20%260%20%5C%5C%200%262%20%261%20%5C%5C%200%261%20%262%20%5Cend%7Bbmatrix%7D,求正交矩阵Q,使eq?%28AQ%5ET%29%28AQ%29

为正交矩阵

(1)求出特征值及特征向量

(2)特征向量单位化正交化

(3)eq?Q%5ETAQ%3D%5CLambda

(4)eq?%28AQ%29%5ET%28AQ%29%3DQ%5ETA%5E2Q%3D%28Q%5ETAQ%29%5E2%3D%5CLambda%20%5E2

eq?A%3D%5Cbegin%7Bbmatrix%7D%200%261%20%260%20%260%5C%5C%201%260%20%260%20%260%5C%5C%200%260%20%262%261%20%5C%5C0%260%261%262%20%5Cend%7Bbmatrix%7D,求eq?%28AP%5ET%29%28AP%29为对角矩阵

eq?A%5E2%3D%5Cbegin%7Bbmatrix%7D%201%20%260%20%260%20%260%5C%5C%200%261%20%260%20%260%5C%5C%200%260%20%265%264%5C%5C0%260%264%265%20%5Cend%7Bbmatrix%7D

逆线性变换

eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20y_1%3Dx_1%5C%5C%20y_2%3Dx_2%5C%5C%20y_3%3Dx_3+%5Cfrac%7B4%7D%7B5%7Dx_4%5C%5C%20y_4%3Dx_4%20%5Cend%7Bmatrix%7D%5Cright.

则可得到P

二次型

   1.任一n阶实对称矩阵A,总可以合同一对角矩阵

   2. 对于给定的二次型无论怎么坐标变换

       正负惯性指数不变

   3.对于任一个n元二次型eq?x%5ETAx,其中A是实对称矩阵

      必存在正交变换eq?x%3DQy,使得eq?x%5ETAx化成标准型

                eq?%5Clambda%20_1y%5E2_1+%5Clambda%20_2y%5E2_2+...+%5Clambda%20_ny%5E2_n

   4.n元二次型eq?x%5ETAx,正定的充分必要条件

        1)正惯性指数为n

        2)A与E合同,存在可逆矩阵C,eq?C%5ETAC%3DE

        3)所有特征值均为正数

        4)各阶顺序主子式均大于0

已知eq?A%3D%5Cbegin%7Bbmatrix%7D%201%20%261%20%260%20%5C%5C%201%262%20%26-1%20%5C%5C%200%26-1%20%26-4%20%5Cend%7Bbmatrix%7D%2C%20%5CLambda%20%3D%5Cbegin%7Bbmatrix%7D%201%20%260%20%260%20%5C%5C%200%261%20%260%20%5C%5C%200%260%20%26-5%20%5Cend%7Bbmatrix%7D%2C

若有可逆矩阵C使得eq?C%5ETAC%3D%5CLambda,则C

(1)对A做成对的初等变换,对E做初等行变换

eq?%5BA%7CE%5D%3D%5Cbegin%7Bbmatrix%7D%201%20%261%20%260%20%26%7C%20%261%20%26%20%26%20%5C%5C%201%20%262%20%26-1%20%26%7C%20%26%20%261%20%26%20%5C%5C%200%26%20-1%20%26-4%20%26%7C%20%26%20%26%20%261%20%5Cend%7Bbmatrix%7D%5CRightarrow

eq?%5Cbegin%7Bbmatrix%7D%201%20%260%20%260%20%26%7C%20%261%20%26%20%26%20%5C%5C%200%20%261%20%26-1%20%26%7C%20%26-1%20%261%20%26%20%5C%5C%200%26%20-1%20%26-4%20%26%7C%20%26%20%26%20%261%20%5Cend%7Bbmatrix%7D%5CRightarrow

eq?%5Cbegin%7Bbmatrix%7D%201%20%260%20%260%20%26%7C%20%261%20%26%20%26%20%5C%5C%200%20%261%20%260%20%26%7C%20%26-1%20%261%20%26%20%5C%5C%200%26%200%20%26-5%20%26%7C%20%26%20-1%261%20%261%20%5Cend%7Bbmatrix%7D%3D%5B%5CLambda%7CC%5ET%5D

(2)求出特征值及对应特征向量组成C

 

若可逆矩阵D满足eq?D%5ETD%3D%5Cbegin%7Bbmatrix%7D%201%20%26-1%20%261%20%5C%5C%20-1%26%202%20%26-3%20%5C%5C%201%26%20-3%20%26%206%20%5Cend%7Bbmatrix%7D

对D^TED做成对的初等行列变换,E做逆行变换

eq?%5BD%5ETED%7CE%5D%3D%5Cbegin%7Bbmatrix%7D%201%20%26-1%20%261%20%26%7C%261%26%26%5C%5C%20-1%26%202%20%26-3%20%26%7C%26%261%26%5C%5C%201%26%20-3%20%26%206%20%26%7C%26%26%261%5Cend%7Bbmatrix%7D%5CRightarrow

eq?%5Cbegin%7Bbmatrix%7D%201%20%260%20%261%20%26%7C%261%26%26%5C%5C%200%26%201%20%26-2%20%26%7C%26-1%261%26%5C%5C%201%26%20-2%20%26%206%20%26%7C%26%26%261%5Cend%7Bbmatrix%7D%5CRightarrow

eq?%5Cbegin%7Bbmatrix%7D%201%20%260%20%260%20%26%7C%261%26%26%5C%5C%200%26%201%20%26-2%20%26%7C%26-1%261%26%5C%5C%200%26%20-2%20%26%206%20%26%7C%261%26%261%5Cend%7Bbmatrix%7D%5CRightarrow

eq?%5Cbegin%7Bbmatrix%7D%201%20%260%20%260%20%26%7C%261%26%26%5C%5C%200%26%201%20%260%20%26%7C%26-1%261%26%5C%5C%200%26%200%20%26%201%20%26%7C%261%26-2%261%5Cend%7Bbmatrix%7D%3D%5BE%7CD%5ET%5D


已知eq?f%28x%2Cy%29%3Dx%5E2+4xy+y%5E2,求正交变换

eq?%5Cbegin%7Bbmatrix%7D%20x%5C%5C%20y%20%5Cend%7Bbmatrix%7D%3DP%20%5Cbegin%7Bbmatrix%7D%20u%5C%5C%20v%20%5Cend%7Bbmatrix%7D,使得eq?f%28x%2Cy%29%3D%3D2u%5E2+2%5Csqrt3uv

eq?%5Cbegin%7Bbmatrix%7D%20x%26y%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%201%262%5C%5C%202%261%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20x%5C%5C%20y%20%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%20u%26v%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%202%26%5Csqrt3%5C%5C%20%5Csqrt3%260%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20u%5C%5Cv%5Cend%7Bbmatrix%7D

eq?A%3D%5Cbegin%7Bbmatrix%7D%201%262%5C%5C%202%261%20%5Cend%7Bbmatrix%7D的两个特征向量eq?%5Cbegin%7Bbmatrix%7D%201%5C%5C1%20%5Cend%7Bbmatrix%7D%20%2C%5Cbegin%7Bbmatrix%7D%201%5C%5C-1%20%5Cend%7Bbmatrix%7D

eq?B%3D%5Cbegin%7Bbmatrix%7D%202%26%5Csqrt3%5C%5C%20%5Csqrt3%260%20%5Cend%7Bbmatrix%7D的两个特征向量eq?%5Cbegin%7Bbmatrix%7D%20%5Csqrt3%5C%5C1%20%5Cend%7Bbmatrix%7D%20%2C%5Cbegin%7Bbmatrix%7D%201%5C%5C-%5Csqrt3%20%5Cend%7Bbmatrix%7D

eq?Q_1%3D%5Cfrac%7B1%7D%7B%5Csqrt2%7D%5Cbegin%7Bbmatrix%7D%201%261%20%5C%5C%201%26%20-1%20%5Cend%7Bbmatrix%7D%2C%20Q_2%3D%5Cfrac%7B1%7D%7B2%7D%5Cbegin%7Bbmatrix%7D%20%5Csqrt3%261%20%5C%5C%201%26%20-%5Csqrt3%20%5Cend%7Bbmatrix%7D

eq?Q_1%5ETAQ_1%3D%5Cbegin%7Bbmatrix%7D%203%20%26%20%5C%5C%20%26%20-1%20%5Cend%7Bbmatrix%7D%3DQ_2%5ETBQ_2

eq?P%3DQ_1Q_2%5ET%3DQ_1Q_2%3D%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1+%5Csqrt3%7D%7B2%5Csqrt2%7D%20%26%5Cfrac%7B1-%5Csqrt3%7D%7B2%5Csqrt2%7D%20%5C%5C%20%5Cfrac%7B-1+%5Csqrt3%7D%7B2%5Csqrt2%7D%26%5Cfrac%7B1+%5Csqrt3%7D%7B2%5Csqrt2%7D%20%5Cend%7Bbmatrix%7D

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值