概率论考研复习

随机事件和概率

事件的关系与运算

互斥(互不相容)

如果A和B的关系为AB=ф,即AB不能同时发生

则称A与B互斥或互不相容

互逆(对立)

如果A与B有且仅有一个发生,A∪B=Ω,A∩B=ф

则称A与B为对立事件或互逆事件

A发生而B不发生,称A与B的差,记A-B

eq?A-B%3DA%5Cbar%7BB%7D

运算规律

eq?%5Coverline%7BA%5Ccup%20B%7D%3D%5Cbar%20A%5Cbar%20B%2C%5Coverline%7BAB%7D%3D%5Cbar%20A%20%5Ccup%20%5Cbar%20B

概率及概率公式

独立

当0<P(A)<1,A与B独立相当于P(B|A)=P(B)或eq?P%28B%7CA%29%3DP%28B%7C%5Cbar%7BA%7D%29

多个事件相互独立,则其中任意几个事件相互独立

多个事件两两独立,则这几个事件不一定相互独立

五大概率公式

eq?P%28A%5Ccup%20B%29%3DP%28A%29&plus;P%28B%29-P%28AB%29

eq?P%28A%5Ccup%20B%20%5Ccup%20C%29%3DP%28A%29&plus;P%28B%29&plus;P%28C%29-P%28AB%29-P%28AC%29-P%28BC%29&plus;P%28ABC%29

eq?P%28A-B%29%3DP%28A%29-P%28AB%29%3DP%28A%5Cbar%7BB%7D%29

eq?P%28A%5Ccup%20B%29%3D1-P%28%5Cbar%7BA%7D%20%5Cbar%7BB%7D%29

全概率公式

eq?P%28A%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7DP%28B_i%29P%28A%7CB_i%29

贝叶斯公式

eq?B_1%2CB_2%2C....B_n满足eq?%5Cbigcup_%7Bi%3D1%7D%5E%7Bn%7DB_i%3D%5COmega%20%2CB_iB_j%3D%5Cvarnothing%20%28i%5Cneq%20j%29

则        eq?P%28B_j%7CA%29%3D%5Cfrac%7BP%28B_j%29P%28A%7CB_j%29%7D%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7DP%28B_i%29P%28A%7CB_i%29%7D

补充

从n个不同不同元素中每次取出一个放回后在取下一个

连续m次所得的组合称为重复组合,则重复组合总数为eq?C%5E%7Bm%7D_%7Bn&plus;m-1%7D

如果把n个不同元素分成k组,使得第i组有eq?n_i个元素

eq?%5Csum_%7Bi%3D1%7D%5E%7Bk%7Dn_i%3Dn,不考虑元素的顺序,那么不同的分法eq?%5Cfrac%7Bn%21%7D%7Bn_1%21n_2%21...n_k%21%7D

常用组合公式

eq?C%5Ek_n%3DC%5E%7Bn-k%7D_n%2CC%5Ek_%7Bn&plus;1%7D%3DC%5Ek_n&plus;C%5E%7Bk-1%7D_n

eq?%5Csum_%7Bi%3D0%7D%5E%7Bn%7DC%5Ei_n%3D2%5En%2CC%5Ek_%7Bn&plus;m%7D%3D%5Csum_%7Bi%3D0%7D%5E%7Bk%7DC%5Ei_nC%5E%7Bk-i%7D_m

随机变量及其概率分布

分布函数的性质

eq?f%28-%5Cinfty%29%3D0%2Cf%28&plus;%5Cinfty%29%3D1,单调非减,右连续

常用分布

泊松分布

eq?P%5C%7BX%3Dk%5C%7D%3D%5Cfrac%7B%5Clambda%5Ek%7D%7Bk%21%7De%5E%7B-%5Clambda%7D%2C%28%5Clambda%3E0%29

记作eq?X%5Csim%20P%28%5Clambda%29

泊松定理

在伯努利试验中,eq?p_n代表事件A在一次实验中出现的概率

它与实验总数n有关,且随n的增大,eq?p_n在减小

eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7Dnp_n%3D%5Clambda,则,出现k次A发生的概率

eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7DC%5Ek_np%5Ek_n%281-p_n%29%5E%7Bn-k%7D%3D%5Cfrac%7B%5Clambda%5Ek%7D%7Bk%21%7De%5E%7B-%5Clambda%7D

指数分布

连续型随机变量X的概率密度为

eq?f%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Clambda%20e%5E%7B-%5Clambda%7D%2Cx%3E0%5C%5C%200%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2Cx%5Cleq%200%20%5Cend%7Bmatrix%7D%5Cright.

则称X服从参数eq?%5Clambda的指数分布,记作eq?X%5Csim%20E%28%5Clambda%29

X的分布函数

eq?F%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%201-e%5E%7B%5Clambda%20x%7D%2Cx%3E0%5C%5C%200%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2Cx%5Cleq%200%20%5Cend%7Bmatrix%7D%5Cright.

正态分布

如果随机变量X的概率密度为

eq?f%28x%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%5Csigma%20%7De%5E%7B-%5Cfrac%7B%28x-%5Cmu%20%29%5E2%7D%7B2%5Csigma%20%5E2%7D%7D%2C-%5Cinfty%3Cx%3C&plus;%5Cinfty

则称X服从参数为eq?%5Cmu%20%2C%5Csigma的正态分布,记作eq?X%5Csim%20N%28%5Cmu%2C%5Csigma%5E2%29

概率密度

eq?%5Cvarphi%20%28x%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7De%5E%7B-%5Cfrac%7B%28x-%5Cmu%29%5E2%7D%7B2%5Csigma%5E2%7D%7D%2C-%5Cinfty%3Cx%3C&plus;%5Cinfty

随机变量函数的分布

公式法

设y=g(x)是单调函数,导数不为0的可导函数,h(y)

为它的反函数,则

eq?f_Y%28y%29%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%7Ch%27%28y%29%7Cf_X%28h%28y%29%29%2C%5Calpha%3Cy%3C%5Cbeta%5C%5C%200%2C%20%5Cend%7Bmatrix%7D%5Cright.

定义法

先求Y的分布函数eq?F_Y%28y%29

eq?F_Y%28y%29%3DP%5C%7BY%3Cy%5C%7D%3DP%5C%7Bg%28X%29%3Cy%5C%7D%3D%5Cint_%7Bg%28x%29%5Cleq%20y%7Df_X%28x%29dx

甲乙两人进行射击比赛,约定甲先射eq?P%5C%7BX%3Dn%5C%7D%3D%5Cfrac%7B30%5En%7D%7Bn%21%7De%5E%7B-30%7D

若射不中,乙射,若射不中再由甲射

以此类推,谁先射中谁获胜,比赛终止

甲乙射中的概率分别为0.4,0.6,求

甲乙获胜的概率

eq?P%5C%7BY%3D0%5C%7D%3D0.36%281&plus;0.24&plus;0.24%5E2&plus;...&plus;0.24%5En%29%3D%5Cfrac%7B0.36%7D%7B1-0.24%7D%3D%5Cfrac%7B9%7D%7B19%7D

eq?P%5C%7BY%3D1%5C%7D%3D0.4%281&plus;0.24&plus;0.24%5E2&plus;...&plus;0.24%5En%29%3D%5Cfrac%7B0.4%7D%7B1-0.24%7D%3D%5Cfrac%7B10%7D%7B19%7D


设某时段进入某景区游客人数服从

参数为eq?%5Clambda%3D30的泊松分布,每位游客

乘坐观光缆车的概率均为0.6,且每位

游客乘坐观光缆车时=是相互独立的

求进入该景区的游客乘坐观光缆车

人数的概率分布及数学期望与方差

设X=n的条件下,游客人数eq?Y%5Csim%20B%28n%2C0.6%29

eq?P%5C%7BX%3Dn%5C%7D%3D%5Cfrac%7B30%5En%7D%7Bn%21%7De%5E%7B-30%7D

eq?P%5C%7BY%3Dk%7CX%3Dn%5C%7D%3DC%5Ek_n0.6%5Ek%5Ccdot%200.4%5E%7Bn-k%7D

当k>n时eq?P%5C%7BY%3Dk%7CX%3Dn%5C%7D%3D0

由全概率公式得

eq?P%5C%7BY%3Dk%5C%7D%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7DP%5C%7BX%3Dn%5C%7DP%5C%7BY%3Dk%7CX%3Dn%5C%7D

                     eq?%3D%5Csum_%7Bn%3Dk%7D%5E%7B%5Cinfty%7DP%5C%7BX%3Dn%5C%7DP%5C%7BY%3Dk%7CX%3Dn%5C%7D

                     eq?%3D%5Cfrac%7B18%5Ek%7D%7Bk%21%7De%5E%7B-30%7D

于是Y服从参数为18的泊松分布,EY=DY=18


若随机变量X的概率分布为

X1234
P0.10.20.30.4

 

 

   

    

 

令随机变量eq?Y%3Dg%28X%29%3D%5Cfrac%7B1%7D%7B2%7D%5B1&plus;%28-1%29%5EX%5D

求Y的概率分布

 

eq?X%5Csim%20B%28n%2Cp%29求X的取值为偶数时的概率P

eq?P%5C%7BY%3D1%5C%7D%3DEY%3DE%5Bg%28X%29%5D%3D%5Cfrac%7B1%7D%7B2%7D%5C%7B1&plus;E%5B%28-1%29%5EX%5D%5C%7D

                     eq?%3D%5Cfrac%7B1%7D%7B2%7D%5B1&plus;%5Csum_%7Bk%3D0%7D%5En%28-1%29%5EkC%5Ek_np%5Ek%281-p%29%5E%7Bn-k%7D%5D

                     eq?%3D%5Cfrac%7B1%7D%7B2%7D%5B1&plus;%281-2p%29%5En%5D

多维随机变量及其分布

分布函数的性质

eq?F%28x%2Cy%29%3DP%5C%7BX%5Cleq%20x%2CY%5Cleq%20y%20%5C%7D%2C-%5Cinfty%3Cx%2Cy%3C&plus;%5Cinfty

eq?P%5C%7Ba%3C%20X%5Cleq%20b%2Cc%3CY%5Cleq%20d%5C%7D%3DF%28b%2Cd%29&plus;F%28a%2Cc%29-F%28b%2Cc%29-F%28a%2Cd%29

F(x,y)均关于x,y右连续,单调不减

条件分布

如果给定的ε>0,eq?P%5C%7By-%5Cvarepsilon%20%3CY%5Cleq%20y&plus;%5Cvarepsilon%20%5C%7D%3E0

eq?%5Clim_%7B%5Cvarepsilon%20%5Cto%200%5E&plus;%7DP%5C%7BX%5Cleq%20x%7Cy-%5Cvarepsilon%20%3CY%5Cleq%20y&plus;%5Cvarepsilon%5C%7D

eq?%3D%5Clim_%7B%5Cvarepsilon%20%5Cto%200%5E&plus;%7D%5Cfrac%7BP%5C%7BX%5Cleq%20x%2Cy-%5Cvarepsilon%20%3CY%5Cleq%20y&plus;%5Cvarepsilon%5C%7D%7D%7BP%5C%7By-%5Cvarepsilon%20%3CY%5Cleq%20y&plus;%5Cvarepsilon%5C%7D%7D

此极限为Y=y条件下X的分布

eq?F_%7BX%7CY%7D%28x%7Cy%29%2CP%5C%7BX%5Cleq%20x%7CY%3Dy%5C%7D

边缘概率密度

eq?f_X%28x%29%3D%5Cint%5E%7B&plus;%5Cinfty%7D_%7B-%5Cinfty%7Df%28x%2Cy%29dy

eq?f_Y%28y%29%3D%5Cint%5E%7B&plus;%5Cinfty%7D_%7B-%5Cinfty%7Df%28x%2Cy%29dx

两个随机变量函数的分布

X,Y均连续

eq?F_Z%28z%29%3DP%5C%7BZ%5Cleq%20z%5C%7D%3DP%5C%7Bg%28X%2CY%29%5Cleq%20z%5C%7D%3D%5Ciint_%7Bg%28x%2Cy%29%5Cleq%20z%7Df%28x%2Cy%29dxdy

X,Y相互独立

Z=X+Y

eq?f_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7Df_X%28x%29f_Y%28z-x%29dx

eq?f_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7Df_X%28z-y%29f_Y%28y%29dy

eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20u%3Dx%5C%5C%20v%3Dx&plus;y%20%5Cend%7Bmatrix%7D%5Cright.

eq?F_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7Bz%7D%5Cint_%7B-%5Cinfty%7D%5E%7Bz-x%7Df%28u%2Cv%29dudv

eq?f_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7Df_X%28x%29f_Y%28z-x%29dx

Z=XY

eq?f_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7D%5Cfrac%7B1%7D%7B%7Cx%7C%7Df_X%28x%29f_Y%28z-x%29dx

eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20u%3Dx%5C%5C%20v%3Dxy%20%5Cend%7Bmatrix%7D%5Cright.

eq?F_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7Bz%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cfrac%7Bz%7D%7Bx%7D%7Df%28u%2Cv%29dudv

eq?f_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7D%5Cfrac%7B1%7D%7B%7Cx%7C%7Df_X%28x%29f_Y%28%5Cfrac%7Bz%7D%7Bx%7D%29dx

Z=Y/X

eq?f_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7D%7Cx%7Cf_X%28x%29f_Y%28z-x%29dx

eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20u%3Dx%5C%5C%20v%3D%5Cfrac%7By%7D%7Bx%7D%20%5Cend%7Bmatrix%7D%5Cright.

eq?F_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7Bz%7D%5Cint_%7B-%5Cinfty%7D%5E%7Bxz%7Df%28u%2Cv%29dudv

eq?f_Z%28z%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7D%7Cx%7Cf_X%28x%29f_Y%28%5Cfrac%7Bz%7D%7Bx%7D%29dx

Z=max{X,Y}

eq?F_Z%28z%29%3DF_X%28x%29F_Y%28y%29

Z=min{X,Y}

eq?F_Z%28z%29%3D1-%5B1-F_X%28x%29%5D%5B1-F_Y%28y%29%5D

设二维连续型随机变量(X,Y)的分布函数为

eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%200%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2Cx%3C0%20%5C%2Cor%20y%3C0%20%5C%5C%20x%5E2y%5E2%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C0%5Cleq%20x%3C1%2C0%5Cleq%20y%3C1%5C%5C%20x%5E2%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C0%5Cleq%20x%3C1%2Cy%5Cgeq1%5C%5C%20y%5E2%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2Cx%5Cgeq%201%2C0%5Cleq%20y%20%3C1%5C%5C%201%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2Cx%5Cgeq1%2Cy%5Cgeq1%20%5Cend%7Bmatrix%7D%5Cright.

(1)求eq?P%5C%7B0%3CX%3C%5Cfrac%7B1%7D%7B2%7D%2C%5Cfrac%7B1%7D%7B4%7D%3CY%3C1%5C%7D%2CP%5C%7B0%5Cleq%20X%3C%5Cfrac%7B1%7D%7B2%7D%7C%5Cfrac%7B1%7D%7B4%7D%3CY%3C1%5C%7D

f(x,y)=4xy 0≤x≤1,0≤y≤1  

eq?P%5C%7B0%3CX%3C%5Cfrac%7B1%7D%7B2%7D%2C%5Cfrac%7B1%7D%7B4%7D%3CY%3C1%5C%7D%3D%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7Ddx%5Cint_%7B%5Cfrac%7B1%7D%7B4%7D%7D%5E14xydy%3D%5Cfrac%7B15%7D%7B64%7D

eq?P%5C%7B0%5Cleq%20X%3C%5Cfrac%7B1%7D%7B2%7D%7C%5Cfrac%7B1%7D%7B4%7D%3CY%3C1%5C%7D%3D%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D2xdx%3D%5Cfrac%7B1%7D%7B4%7D

(2)求P{X≤Y},P{X=Y}

eq?P%5C%7B%20X%5Cleq%20Y%5C%7D%3D%5Cint_0%5E1dy%5Cint_0%5Ey4xydx%3D%5Cfrac%7B1%7D%7B2%7D

P{X=Y}为一条线积分为0


eq?D%5C%7B%28x%2Cy%29%7C0%5Cleq%20y%20%5Cleq%201%2C-y%5Cleq%20x%5Cleq%20y%5C%7D

二维随机变量(X,Y)服从D上的均匀分布

(1)(X,Y)关于X,Y的边缘概率密度

   eq?f_Y%3D%5Cint_%7B-y%7D%5E%7By%7Ddx%3D2y

   eq?1.-1%5Cleq%20x%5Cleq0%2Cf_X%3D%5Cint_%7B-x%7D%5E%7B1%7Ddx%3D1&plus;x

   eq?2.%5C%2C%5C%2C0%5Cleq%20x%5Cleq1%2Cf_X%3D%5Cint_%7Bx%7D%5E%7B1%7Ddx%3D1-x

(2)求Z=X-Y的概率密度

   当-2≤Z≤0时

   eq?F_Z%28z%29%3DP%5C%7BX-Y%5Cleq%20z%5C%7D%3D%5Cint_%7B-%5Cfrac%7B1%7D%7B2%7Dz%7D%5E%7B1%7Ddy%5Cint_%7B-y%7D%5E%7Bz&plus;y%7Ddx%3D%5Cfrac%7B1%7D%7B4%7Dz%5E2&plus;z&plus;1

   eq?f_z%3D%5Cfrac%7B1%7D%7B2%7Dz&plus;1


设二维随机变量(X,Y)的概率密度为f(x,y)=4x+2y, 0≤x≤1, 0≤y≤1-x

记Z=min{X,Y}求Z的概率密度

eq?F_Z%28z%29%3DP%5C%7Bmin%5C%7BX%2CY%5C%7D%3Cz%5C%7D%3DP%5C%7BX%5Cleq%20z%5C%7D&plus;P%5C%7BY%5Cleq%20z%5C%7D-P%5C%7BX%5Cleq%20z%2CY%5Cleq%20z%5C%7D

eq?%3D%5Cint_%7B0%7D%5E%7Bz%7Ddx%5Cint_%7B0%7D%5E%7B1-x%7D%284x&plus;2y%29dy&plus;%5Cint_%7B0%7D%5E%7Bz%7Ddy%5Cint_%7B0%7D%5E%7B1-y%7D%284x&plus;2y%29dx&plus;%5Cint_%7B0%7D%5E%7Bz%7Ddx%5Cint_%7B0%7D%5E%7Bz%7D%284x&plus;2y%29dy

eq?%3D3z-4z%5E2


设某商品一周的需求量X是随机变量,已知其概率密度为

                eq?f%28x%29%3Dxe%5E%7B-x%7D%2Cx%3E0

设各周的需求量相互独立,以eq?U_k表示k周的总需求量

(1)eq?U_2eq?U_3的概率密度eq?f_k%28x%29

eq?U_2%3DX_1&plus;X_2%5CRightarrow%20f_2%28x%29%3D%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29f%28x-t%29dt%3De%5E%7B-x%7D%5Cint_%7B0%7D%5E%7Bx%7Dt%28x-t%29dt%3D%5Cfrac%7B1%7D%7B6%7Dx%5E3e%5E%7B-x%7D

eq?U_3%3DU_2&plus;X_3%5CRightarrow%20f_3%28x%29%3D%5Cint_%7B0%7D%5E%7Bx%7Df_2%28t%29f%28x-t%29dt%3D%5Cfrac%7B1%7D%7B6%7De%5E%7B-x%7D%5Cint_%7B0%7D%5E%7Bx%7Dt%5E3%28x-t%29dt%3D%5Cfrac%7B1%7D%7B120%7Dx%5E5e%5E%7B-x%7D

随机变量的数字特征

数学期望

(1)离散型:eq?EX%3D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7Dx_kp_k

                        eq?Y%3Dg%28X%29%2CEY%3D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7Dg%28x_k%29p_k

(2)连续型:eq?EX%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7Dxf%28x%29dx

                       eq?Y%3Dg%28X%29%2CEY%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7Dg%28x%29f%28x%29dx 

                       eq?Z%3Dg%28X%2CY%29%2CEZ%3D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7D%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7Dg%28x%2Cy%29f%28x%2Cy%29dxdy

方差

eq?D%28X%29%3DEX%5E2-E%5E2X

eq?D%28X%5Cpm%20Y%29%3DD%28X%29&plus;D%28Y%29%5Cpm2Cov%28X%2CY%29

常用随机变量数学期望方差

分布EXDX
0-1分布pp(1-p)
二项分布,X~B(n,p)npnp(1-p)
超几何分布eq?n%5Cfrac%7BN_1%7D%7BN%7Deq?n%5Cfrac%7BN_1%28N-N_1%29%28N-n%29%7D%7BN%5E2%28N-1%29%7D
泊松分布,X~P(λ)λλ
几何分布,P{X=k}=p(1-p)^(k-1)eq?%5Cfrac%7B1%7D%7Bp%7Deq?%5Cfrac%7B1-p%7D%7Bp%5E2%7D
均匀分布,X~U(a,b)eq?%5Cfrac%7Ba&plus;b%7D%7B2%7Deq?%5Cfrac%7B%28b-a%29%5E2%7D%7B12%7D
指数分布,X~E(λ)eq?%5Cfrac%7B1%7D%7B%5Clambda%7Deq?%5Cfrac%7B1%7D%7B%5Clambda%5E2%7D
正态分布,X~N(μ,σ^2)μσ^2

 协方差的计算公式和性质

eq?Cov%28X%2CY%29%3DE%28XY%29-E%28X%29E%28Y%29

eq?Cov%28aX%2CbY%29%3DabCov%28X%2CY%29

eq?Cov%28X_1&plus;X_2%2CY%29%3DCov%28X_1%2CY%29&plus;Cov%28X_2%2CY%29

相关系数

eq?%5Crho%20_%7BXY%7D%3D%5Cfrac%7BCov%28X%2CY%29%7D%7B%5Csqrt%7BDX%7D%5Csqrt%7BDY%7D%7Deq?%7C%5Crho_%7BXY%7D%7C%5Cleq1

eq?%5Crho_%7BXY%7D%3D1的充要条件是eq?P%5C%7BY%3DaX&plus;b%5C%7D%3D1

独立与不相关

独立必不相关,不相关也不一定独立

对于二维正态随机变量(X,Y),相互独立的充要条件是ρ=0

对于二维正态随机变量(X,Y),独立与不相关是等价的 


某人进行独立重复射击,直到命中与不命中两个结果都出现为止

设每次命中概率为p,X表示射击次数,EX=3,则p

eq?P%5C%7BX%3Dn%5C%7D%3Dpq%5E%7Bn-1%7D&plus;qp%5E%7Bn-1%7D

eq?EX%3D%5Csum_%7Bn%3D2%7D%5E%7B%5Cinfty%7Dn%28pq%5E%7Bn-1%7D&plus;qp%5E%7Bn-1%7D%29%3Dp%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dnq%5E%7Bn-1%7D&plus;q%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dnp%5E%7Bn-1%7D-%28p&plus;q%29

构造幂级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dnx%5E%7Bn-1%7D%2CS%28x%29%3D%28%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Dx%5En%29%27%3D%28%5Cfrac%7Bx%7D%7B1-x%7D%29%27%3D%5Cfrac%7B1%7D%7B%281-x%29%5E2%7D

eq?EX%3DpS%28q%29&plus;qS%28p%29-%28p&plus;q%29%3D%5Cfrac%7B1%7D%7Bp%7D&plus;%5Cfrac%7B1%7D%7B1-p%7D-1%3D3%5CRightarrow%20p%3D%5Cfrac%7B1%7D%7B2%7D


设随机变量X,Y相互独立,且都服从标准正态分布N(0,1)

记U=X-Y,V=XY,则U,V的相关系数

eq?Cov%28U%2CV%29%3DE%28UV%29-E%28U%29E%28V%29

eq?%3DE%5B%28X-Y%29XY%5D%3DEX%5E2Y-EXY%5E2%3D0


若连续型随机变量X服从参数为1的指数分布

令随机变量Y=[X+1](取整),EY=

eq?F%28X%29%3D1-e%5E%7B-x%7D%2Cx%5Cgeq0

eq?P%5C%7B%5BX&plus;1%5D%3Dk%5C%7D%3DP%5C%7Bk%5Cleq%20X&plus;1%3Ck&plus;1%5C%7D

eq?%3DF%28k%29-F%28k-1%29%3D%281-e%5E%7B-1%7D%29%28e%5E%7B-1%7D%29%5E%7Bk-1%7D

所以随机变量Y服从几何分布

eq?EY%3D%5Cfrac%7B1%7D%7B1-e%5E%7B-1%7D%7D%3D%5Cfrac%7Be%7D%7Be-1%7D


若一设备在任何长为t的时间段内发生故障的次数N(t)

服从参数为λt的泊松分布,设两次故障之间时间间隔T

ET

t<0时,F(t)=P{T≤t}=0,t≥0,T≥t与N(t)=0等价

此时eq?F%28t%29%3DP%5C%7BT%5Cleq%20t%5C%7D%3D1-P%5C%7BN%28t%29%3D0%5C%7D%3D1-e%5E%7B%5Clambda%20t%7D

时间间隔T服从参数为λ的指数分布

eq?ET%3D%5Cfrac%7B1%7D%7B%5Clambda%7D


设随机变量(X,Y)的概率密度f(x,y)满足f(x,y)=f(-x,y)且ρ存在

ρ的值

eq?EXY%3D%5Cint%20ydy%5Cint%20xf%28x%2Cy%29dx

令t=-x

eq?EXY%3D%5Cint%20ydy%5Cint_%7B&plus;%5Cinfty%7D%5E%7B-%5Cinfty%7D%20tf%28t%2Cy%29dt%3D-%5Cint%20yfy%5Cint_%7B-%5Cinfty%7D%5E%7B&plus;%5Cinfty%7D%20xf%28-x%2Cy%29dx%3D-EXY

ρ=0

结论

非矩形区域不独立

积分区域无对称性则必定相关


产品寿命X是一个随机变量,其分布函数与概率密度分别为

F(x),f(x)产品已工作到时刻x,在时刻x后的单位时间去△x

内发生失效的概率称为产品在时刻x的顺势失效率,记λ(x)

(1)证明eq?%5Clambda%28x%29%3D%5Cfrac%7Bf%28x%29%7D%7B1-F%28x%29%7D

eq?%5Clambda%28x%29%3D%5Clim_%7B%5CDelta%20x%5Cto%200%5E&plus;%7D%5Cfrac%7BP%5C%7Bx%3CX%5Cleq%20x&plus;%5CDelta%20x%7CX%3Ex%5C%7D%7D%7B%5CDelta%20x%7D%3D%20%5Cfrac%7BP%5C%7Bx%3CX%5Cleq%20x&plus;%5CDelta%20x%2CX%3Ex%5C%7D%7D%7B%5CDelta%20x.P%5C%7BX%3Ex%5C%7D%7D

          eq?%3D%5Clim_%7B%5CDelta%20x%5Cto%200%5E&plus;%7D%5Cfrac%7BF%28x&plus;%5CDelta%20x%29-F%28x%29%7D%7B%5CDelta%20x%7D.%5Cfrac%7B1%7D%7B1-F%28x%29%7D%3D%20%5Cfrac%7Bf%28x%29%7D%7B1-F%28x%29%7D

(2)λ(x)=α,求产品寿命X的数学期望

eq?%5Calpha%3D%5Cfrac%7BF%27%28x%29%7D%7B1-F%28x%29%7D%5CRightarrow%20%5Calpha%20x&plus;C%3D-%5Cln%20%5B1-F%28x%29%5D

eq?F%280%29%3D0%5CRightarrow%20C%3D0%5CRightarrow%20F%28x%29%3D1-e%5E%7B%5Calpha%20x%7D%5CRightarrow%20EX%3D%5Cfrac%7B1%7D%7B%5Calpha%7D

大数定律与中心极限定理

切比雪夫不等式

随机变量X的数学期望EX和方差DX存在,对任意eq?%5Cvarepsilon>0

                eq?P%5C%7B%7CX-EX%7C%5Cgeq%5Cvarepsilon%20%5C%7D%5Cleq%5Cfrac%7BDX%7D%7B%5Cvarepsilon%20%5E2%7D

 

 

拉普拉斯中心极限定理

设随机变量eq?X_n%5Csim%20B%28n%2Cp%29对于任意实数x有

        eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7DP%5C%7B%5Cfrac%7BX_n-np%7D%7B%5Csqrt%7Bnp%281-p%29%7D%7D%5Cleq%20x%5C%7D%3D%5CPhi%20%28x%29

当n充分大时近似服从N(0,1),或eq?X_n%5Csim%20N%28np%2Cnp%281-p%29%29

林德伯格中心极限定理

设随机变量eq?X_1%2CX_2...X_n独立同分布,具有数学期望与方差

eq?E%28X_n%29%3D%5Cmu%20%2CD%28X_n%29%3D%5Csigma%20%5E2,则对于任意x

        eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7DP%5C%7B%5Cfrac%7B%5Csum%20_%7Bi%3D1%7D%5E%7Bn%7DX_i-n%5Cmu%7D%7B%5Csqrt%7Bn%7D%5Csigma%7D%5Cleq%20x%5C%7D%3D%5CPhi%20%28x%29

当n充分大时近似服从N(0,1),或eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20X_i%5Csim%20N%28n%5Cmu%2Cn%5Csigma%5E2%29  

数理统计

样本分布

如果随机变量eq?X_1%2CX_2...X_n独立与总体X同分布

则称eq?X_1%2CX_2...X_n为来自总体的简单随机样本

n为样本容量,样本的具体观测值eq?x_1%2Cx_2...x_n

为样本值,或称总体X的n个独立观测值

1.如果总体X的分布为F(x),eq?X_1%2CX_2...X_n的分布

eq?F_n%28x_1%2Cx_2...x_n%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bn%7DF%28x_i%29

2.如果总体X的概率密度为f(x),eq?X_1%2CX_2...X_n的概率密度

eq?f_n%28x_1%2Cx_2...x_n%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Df%28x_i%29

数字特征

样本均值:eq?%5Cbar%7BX%7D%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7DX_i

样本方差:eq?S%5E2%3D%5Cfrac%7B1%7D%7Bn-1%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%28X_i-%5Cbar%7BX%7D%29%5E2

样本k阶原点矩:eq?A_k%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7DX_i%5Ek%2CA_1%3D%5Cbar%7BX%7D

样本k阶中心矩:eq?B_k%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%28X-%5Cbar%7BX%7D%29%5Ek%2CB_2%3D%5Cfrac%7Bn-1%7D%7Bn%7DS%5E2

常用抽样分布

eq?%5Cchi%20%5E2分布

t分布

F分布

两个正态总体

eq?X%5Csim%20N%28%5Cmu_1%2C%5Csigma_1%5E2%29%2CY%5Csim%20N%28%5Cmu_2%2C%5Csigma_2%5E2%29eq?X_1%2CX_2...X_%7Bn_1%7D

eq?Y_1%2CY_2...Y_%7Bn_2%7D是分别来自总体X,Y的样本且相互独立

样本均值分别为eq?%5Cbar%7BX%7D%2C%5Cbar%7BY%7D,样本方差分别为eq?S_1%5E2%2CS_2%5E2,有

eq?%5Cbar%7BX%7D-%5Cbar%7BY%7D%5Csim%20N%28%5Cmu_1-%5Cmu_2%2C%5Cfrac%7B%5Csigma_1%5E2%7D%7Bn_1%7D&plus;%5Cfrac%7B%5Csigma_2%5E2%7D%7Bn_2%7D%29

eq?U%3D%5Cfrac%7B%28%5Cbar%7BX%7D-%5Cbar%7BY%7D%29-%28%5Cmu_1-%5Cmu_2%29%7D%7B%5Csqrt%7B%5Cfrac%7B%5Csigma_1%5E2%7D%7Bn_1%7D&plus;%5Cfrac%7B%5Csigma_2%5E2%7D%7Bn_2%7D%7D%7D%5Csim%20N%280%2C1%29

如果eq?%5Csigma_1%5E2%3D%5Csigma_2%5E2

eq?U%3D%5Cfrac%7B%28%5Cbar%7BX%7D-%5Cbar%7BY%7D%29-%28%5Cmu_1-%5Cmu_2%29%7D%7B%5Csqrt%7B%5Cfrac%7B1%7D%7Bn_1%7D&plus;%5Cfrac%7B1%7D%7Bn_2%7D%7D%7D%5Csim%20N%280%2C1%29

eq?S_w%3D%5Cfrac%7B%28n_1-1%29S_1%5E2&plus;%28n_2-1%29S_2%5E2%7D%7Bn_1&plus;n_2-2%7D

设总体X服从分布eq?P%5C%7BX%3Dk%5C%7D%3Dp%5Ek%281-p%29%5E%7B1-k%7D

eq?X_1%2CX_2...X_n是来自总体X的简单随机样本,记

eq?Y_1%3Dmax%7BX_i%7D%2CY_2%3Dmin%7BX_j%7D%2CY_3%3DY_1-Y_2

eq?EY_3

eq?P%5C%7BY_3%3D0%5C%7D%3DP%5C%7BY_1%3D0%2CY_2%3D0%5C%7D&plus;P%5C%7BY_1%3D1%2CY_2%3D1%5C%7D

                      eq?%3Dp%5En&plus;%281-p%29%5En

eq?EY_3%3D1-p%5En-%281-p%29%5En

参数估计与假设检验

点估计

eq?%5Chat%7B%5Ctheta%7Deq?%5Ctheta的估计量,如果eq?E%28%5Chat%5Ctheta%29%3D%5Ctheta,则称

eq?%5Chat%5Ctheta%3D%5Chat%5Ctheta%28X_1%2CX_2...X_n%29是未知参数θ的无偏估计量

eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%28X_i-%5Cbar%7BX%7D%29%5E2%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7DX_i%5E2-n%5Cbar%7BX%7D%5E2

eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%28X_i-%5Cbar%7BX%7D%29%5E2%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%28X_i-%5Cmu%29%5E2-n%28%5Cbar%20X-%5Cmu%29%5E2

eq?%5Chat%5Ctheta_1%2C%5Chat%5Ctheta_2都是θ的无偏估计量,且eq?D%28%5Chat%5Ctheta_1%29%5Cleq%20D%28%5Chat%5Ctheta_2%29

则称eq?%5Chat%5Ctheta_1是比eq?%5Chat%5Ctheta_2更有效的θ无偏估计量

矩估计

样本的k阶原点矩eq?%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7DX_i%5Ek存在

用样本k阶原点矩表示待估参数

最大似然估计

构造似然函数

(1)离散型

概率分布:eq?P%5C%7BX%3Da_i%5C%7D%3Dp%28a_i%3B%5Ctheta%29

eq?L%28%5Ctheta%29%3DL%28x_1%2Cx_2...x_n%3B%5Ctheta%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dp%28x_i%3B%5Ctheta%29

(2)连续型

概率密度:eq?f%28x%3B%5Ctheta%29

eq?L%28%5Ctheta%29%3DL%28x_1%2Cx_2...x_n%3B%5Ctheta%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Df%28x_i%3B%5Ctheta%29

求待求参数分别求偏导令偏导方程为0

即可得到使似然函数取最大值的参数值

区间估计

待定参数1-α置信区间
μeq?%5Csigma%5E2已知eq?%28%5Cbar%7BX%7D-u_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%20n%7D%2C%5Cbar%7BX%7D&plus;u_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%20n%7D%29
eq?%5Csigma%5E2未知eq?%28%5Cbar%7BX%7D-t%28n-1%29_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Cfrac%7BS%7D%7B%5Csqrt%20n%7D%2C%5Cbar%7BX%7D&plus;t%28n-1%29_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Cfrac%7BS%7D%7B%5Csqrt%20n%7D
eq?%5Csigma%5E2μ未知eq?%28%5Cfrac%7B%28n-1%29S%5E2%7D%7B%5Cchi%20%5E2_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%28n-1%29%7D%2C%5Cfrac%7B%28n-1%29S%5E2%7D%7B%5Cchi%20%5E2_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%28n-1%29%7D%29
待定参数1-α置信区间
eq?%5Cmu_1-%5Cmu_2eq?%5Csigma%5E2_1%2C%5Csigma%5E2_2已知eq?%28%5Cbar%7BX%7D-%5Cbar%7BY%7D-u_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Csqrt%7B%5Cfrac%7B%5Csigma%5E2_1%7D%7Bn_1%7D&plus;%5Cfrac%7B%5Csigma_2%5E2%7D%7Bn_2%7D%7D%2C%5Cbar%7BX%7D-%5Cbar%7BY%7D&plus;u_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Csqrt%7B%5Cfrac%7B%5Csigma%5E2_1%7D%7Bn_1%7D&plus;%5Cfrac%7B%5Csigma_2%5E2%7D%7Bn_2%7D%7D%29
eq?%5Csigma%5E2_1%2C%5Csigma%5E2_2未知,eq?%5Csigma%5E2_1%3D%5Csigma%5E2_2

eq?%28%5Cbar%7BX%7D-%5Cbar%7BY%7D-t_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%28n_1&plus;n_2-2%29S_w%5Csqrt%7B%5Cfrac%7B1%7D%7Bn_1%7D&plus;%5Cfrac%7B1%7D%7Bn_2%7D%7D%2C

eq?%5Cbar%7BX%7D-%5Cbar%7BY%7D&plus;t_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%28n_1&plus;n_2-2%29S_w%5Csqrt%7B%5Cfrac%7B1%7D%7Bn_1%7D&plus;%5Cfrac%7B1%7D%7Bn_2%7D%7D%29

eq?%5Cfrac%7B%5Csigma%5E2_1%7D%7B%5Csigma%5E2_2%7Deq?%5Cmu_1%2C%5Cmu_2未知eq?%28%5Cfrac%7BS_1%5E2%7D%7BS_2%5E2%7D%5Ccdot%20%5Cfrac%7B1%7D%7BF_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%28n_1-1%2Cn_2-1%29%7D%2C%5Cfrac%7BS_1%5E2%7D%7BS_2%5E2%7D%5Ccdot%20%5Cfrac%7B1%7D%7BF_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%28n_1-1%2Cn_2-1%29%7D%29

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
自动控制节水灌溉技术的高低代表着农业现代化的发展状况,灌溉系统自动化水平较低是制约我国高效农业发展的主要原因。本文就此问题研究了单片机控制的滴灌节水灌溉系统,该系统可对不同土壤的湿度进行监控,并按照作物对土壤湿度的要求进行适、适量灌水,其核心是单片机和PC机构成的控制部分,主要对土壤湿度与灌水量之间的关系、灌溉控制技术及备系统的硬件、软件编程各个部分进行了深入的研究。 单片机控制部分采用上下位机的形式。下位机硬件部分选用AT89C51单片机为核心,主要由土壤湿度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。上位机选用586型以上PC机,通过MAX232芯片实现同下位机的电平转换功能,上下位机之间通过串行通信方式进行数据的双向传输,软件选用VB高级编程语言以建立友好的人机界面。系统主要具有以下功能:可在PC机提供的人机对话界面上置作物要求的土壤湿度相关参数;单片机可将土壤湿度传感器检测到的土壤湿度模拟量转换成数字量,显示于LED显示器上,同单片机可采用串行通信方式将此湿度值传输到PC机上;PC机通过其内程序计算出所需的灌水量和灌水间,且显示于界面上,并将有关的灌水信息反馈给单片机,若需灌水,则单片机系统启动鸣音报警,发出灌水信号,并经放大驱动备,开启电磁阀进行倒计灌水,若不需灌水,即PC机上显示的灌水量和灌水间均为0,系统不进行灌水。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值