卷积神经网络笔记2

本文探讨了卷积神经网络在优化方向上的思考,包括算力不支持的问题、图像处理过程中的下采样和池化、Multi-Layer Perceptron的加速方法。介绍了LeNet-5的结构,如C1层和S2层的细节,并讨论了AlexNet的优化策略,如ReLU、Dropout和LRN。同时,提到了参数量、计算量的计算方法以及优化算法如随机梯度下降。
摘要由CSDN通过智能技术生成

关于优化方向的探讨

性能准确度vs计算量速度

模型板数量大–数据量要大—数据各态历经性—更好的性能

算力的评价指标:FLOPs floating point operations per second
每秒浮点云运算次数,用于衡量计算机的算力和执行效能,尤其是在使用到大量浮点运算的科学计算领域中。

算力不支持:

1.卷积的计算量
2.MLP的计算量
准确度–在算力支持的前提下追求准确度

图像处理过程

img–(conv)—feature map—{pooling}—MLP—结果

缩小图片(Resize)

下采样(Down Sampleing)或称为降采样(downsampled),指缩小图像。其主要目是使得图像符合显示区域的大小,生成对应图像的缩略图。

池化(pooling)则是卷积神经网络中一个重要的概念,它是降采样的一种形式。它会压缩输入的特征图,一方面减少了特征,导致了参数减少,进而简化了卷积网络计算时的复杂度;另一方面保持了特征的某种不变性(旋转、平移、伸缩等)。

下采样和池化应该是包含关系,池化属于下采样,而下采样不局限于池化,如果卷积 stride=2,此时也可以把这种卷积叫做下采样。

充分发挥统一了特征提取和决策过程的好处

Multi-Layer Perceptron

由于网络得到了加速,可以Multi-layer
img–conv—pool—conv–pool–conv–MLP–outpure

多层神经元的实质就是对激活函数的缩放。偏置b会产生激活函数的水平轴移动,而权重w则会激活函数的倾斜程度做变换。

加速

前向计算很快 收敛速度是个问题(算力不是)
sigmoid–relu

加速办法:
1.pooling :前向计算加速
池化过程在一般卷积过程后。池化(pooling) 的本质,其实就是采样。Pooling 对于输入的 Feature Map,选择某种方式对其进行降维压缩,以加快运算速度。

2.sigmoid 后向传播加速
Sigmoid函数常被用作神经网络的激活函数,将变量映射到0,1之间。

节省时间,完成了CNN的一次优化

后续优化的方向:

a.前向计算部分
b.后向传播部分
前提:计算力不变的情况下
c算法提升,更大数据库,大力出奇迹

搭积木似的去实验
img—conv —other_layer----conv—new design lay–MLP–结果

LeNet-5:结构简单原始

参考文章 :

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值