手写数字识别环境安装(pytorch)(window10)

本文介绍如何使用Anaconda安装PyTorch,并确保其能够利用GPU加速。文章提供了检查CUDA版本的方法,指导读者正确选择与本机CUDA版本相匹配的PyTorch版本。此外,还介绍了如何通过Anaconda安装OpenCV。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Anaconda

TODO

Pytorch

  1. 必须使用conda install 进行安装

  2. 在cmd中nvidia-smi查看本机CUDA版本
    在这里插入图片描述

  3. 官网复制下载命令,选取的CUDA版本不能高于本机CUDA版本
    在这里插入图片描述

  4. 安装后,输入以下代码测试

# 查看是否能用torch
import torch
# 查看torch是否能用显卡
torch.cuda.is_available()

在这里插入图片描述

Opencv

使用conda下载时去官网获取下载命令
在这里插入图片描述
在这里插入图片描述

### 实现带GUI的手写数字识别 对于创建带有图形用户界面(GUI)的手写数字识别Python程序,可以采用PyQt5作为开发工具包之一。此框架允许开发者设计直观的用户交互环境[^2]。 #### 所需库 1. **PyQt5**: 用于构建应用程序的图形用户界面部分。 2. **OpenCV**: 处理图像输入并支持预处理操作,如二值化、缩放等。 3. **NumPy**: 提供多维数组对象以及各种派生对象(如掩码数组),是科学计算的基础库。 4. **TensorFlow 或 PyTorch**: 这些深度学习框架可用于加载训练好的模型来进行预测。 5. **scikit-image 或 PIL (Pillow)**: 图像处理辅助功能,比如调整大小或转换颜色空间。 #### 构建过程概述 - 使用`MyLabel`类扩展自定义组件以便于在界面上绘制手写笔迹的同时显示背景图片。 - 设计主窗口布局,包括画布区域让用户书写数字,按钮触发保存当前绘图内容为图像文件,并设置菜单栏选项方便切换模式或者退出应用。 - 当用户完成绘画后点击提交按钮时,系统应当能够捕捉到该时刻的画面快照,并将其转化为适合喂给神经网络的形式——通常是灰度化的固定尺寸正方形位图。 - 接着调用预先准备好的分类器执行推理任务;这一步骤依赖于之前提到的人工智能平台所提供的API接口函数。 - 最终结果显示框内呈现由算法得出的最佳猜测结果及其置信度得分。 ```python import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QVBoxLayout, QWidget from PyQt5.QtGui import QPixmap, QPainter, QColor from PyQt5.QtCore import Qt class MyLabel(QLabel): def __init__(self, parent=None): super().__init__(parent) self.setMouseTracking(True) def paintEvent(self, event): painter = QPainter(self) pixmap = QPixmap('background.png') painter.drawPixmap(self.rect(), pixmap) if __name__ == '__main__': app = QApplication(sys.argv) window = QMainWindow() central_widget = QWidget(window) layout = QVBoxLayout(central_widget) canvas_label = MyLabel() # 自定义标签用于展示和获取手写输入 submit_button = QPushButton("Submit", clicked=lambda: process_image(canvas_label)) layout.addWidget(submit_button) window.setCentralWidget(central_widget) window.show() def process_image(label): # 假设这里实现了截图逻辑并将得到的结果传递给后续处理流程... pass sys.exit(app.exec_()) ``` 上述代码片段展示了如何初始化一个简单的PyQt5 GUI 应用程序结构,在其中加入了自定义控件 `MyLabel` 来承载用户的即时创作成果。实际项目里还需要补充更多细节,例如具体的事件监听机制以响应触摸/鼠标动作记录轨迹坐标点集,进而形成连贯线条图案;另外就是关于图像采集后的前处理环节也得精心安排确保符合预期标准再送入AI引擎做最终判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值