多维前缀和 学习笔记 模板及例题

14 篇文章 0 订阅
6 篇文章 1 订阅

一维前缀和大家都会,二维就更好理解了。
一维初始化:

	for(i=1;i<=n;i++)
	{
		q[i]=(q[i-1]+a[i]);
	}

二维初始化其实花个图就可以了,这里直接上模板:

	q[1][1]=a[1][1];
	for(i=2;i<=m;i++)
	{
		q[1][i]=(q[1][i-1]+a[1][i]);
	}
	for(i=2;i<=n;i++)
	{
		q[i][1]=(q[i-1][1]+a[i][1]);
	}
	for(i=2;i<=n;i++)
	{
		for(j=2;j<=m;j++)
		{
			q[i][j]=(a[i][j]+q[i-1][j]+q[i][j-1]-q[i-1][j-1]);
		}
	}

这么写更简单:

for(i=1;i<=n;i++)
{
	for(j=1;j<=n;j++)
	{
		a[i][j]+=a[i][j-1];
	}
}
for(i=1;i<=n;i++)
{
	for(j=1;j<=n;j++)
	{
		a[i][j]+=a[i-1][j];
	}
}

三维推荐用后者:

for(i=1;i<=n;i++)
{
	for(j=1;j<=n;j++)
	{
		for(k=1;k<=n;k++)
		{
			a[i][j][k]+=a[i][j][k-1];
		}
	}
}
for(i=1;i<=n;i++)
{
	for(j=1;j<=n;j++)
	{
		for(k=1;k<=n;k++)
		{
			a[i][j][k]+=a[i][j-1][k];
		}
	}
}
for(i=1;i<=n;i++)
{
	for(j=1;j<=n;j++)
	{
		for(k=1;k<=n;k++)
		{
			a[i][j][k]+=a[i-1][j][k];
		}
	}
}

一维查询:


long long ywqzh(int x,int y)
{
	return (q[y]-q[x-1]);
}

二维则还要加上一个公共部分:
x,y是左上角坐标,xx,yy是右下角坐标。


long long ewqzh(int x,int y,int xx,int yy)
{
	return (q[xx][yy]-q[xx][y-1]-q[x-1][yy]+q[x-1][y-1]);
}

三维就更简单了

inline long long swqzh(int aa,int bb,int cc,int i,int j,int k)
{
	return (q[aa][bb][cc]-q[i-1][bb][cc]-q[aa][j-1][cc]-q[aa][bb][k-1]+q[i-1][j-1][cc]+q[aa][j-1][k-1]+q[i-1][bb][k-1]-q[i-1][j-1][k-1]);
}

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
int n,m,ma,mb,i,j,ii,jj,k,a[1111][1111],ax,ay,axx,ayy,hx[1111111],hy[1111111],hxx[1111111],hyy[1111111],kkk;
bool pc[12255872],pcc[12255872],pccc[12255872],pcccc[21788234];
long long q[1111][1111],h[1111111],qzh=0,has,hass,hasss,hassss;
long long ewqzh(int x,int y,int xx,int yy)
{
	return (q[xx][yy]-q[xx][y-1]-q[x-1][yy]+q[x-1][y-1]);
}
void up()
{
	int kkg=kkk;
	while(kkg>1&&h[kkg]<h[kkg/2])
	{
		h[0]=h[kkg];
		h[kkg]=h[kkg/2];
		h[kkg/2]=h[0];
		hx[0]=hx[kkg];
		hx[kkg]=hx[kkg/2];
		hx[kkg/2]=hx[0];
		hy[0]=hy[kkg];
		hy[kkg]=hy[kkg/2];
		hy[kkg/2]=hy[0];
		hxx[0]=hxx[kkg];
		hxx[kkg]=hxx[kkg/2];
		hxx[kkg/2]=hxx[0];
		hyy[0]=hyy[kkg];
		hyy[kkg]=hyy[kkg/2];
		hyy[kkg/2]=hyy[0];
		kkg/=2;
	}
}
void down()
{
	int kkgx=1,kkgy=2;
	while(((kkgy)<=kkk&&h[kkgy]<h[kkgx])||((kkgy+1)<=kkk&&h[kkgy+1]<h[kkgx]))
	{
		if(kkgy+1<=kkk&&h[kkgy]>h[kkgy+1])
		{
			kkgy++;
		}
		h[0]=h[kkgx];
		h[kkgx]=h[kkgy];
		h[kkgy]=h[0];
		hx[0]=hx[kkgx];
		hx[kkgx]=hx[kkgy];
		hx[kkgy]=hx[0];
		hy[0]=hy[kkgx];
		hy[kkgx]=hy[kkgy];
		hy[kkgy]=hy[0];
		hxx[0]=hxx[kkgx];
		hxx[kkgx]=hxx[kkgy];
		hxx[kkgy]=hxx[0];
		hyy[0]=hyy[kkgx];
		hyy[kkgx]=hyy[kkgy];
		hyy[kkgy]=hyy[0];
		kkgx=kkgy;
		kkgy*=2;
	}
}
void add(long long xxx,int x,int y,int xx,int yy)
{
	kkk++;
	h[kkk]=xxx;
	hx[kkk]=x;
	hy[kkk]=y;
	hxx[kkk]=xx;
	hyy[kkk]=yy;
	up();
}
void pop(int xxx)
{
	h[0]=h[xxx];
	h[xxx]=h[kkk];
	h[kkk]=h[0];
	hx[0]=hx[xxx];
	hx[xxx]=hx[kkk];
	hx[kkk]=hx[0];
	hy[0]=hy[xxx];
	hy[xxx]=hy[kkk];
	hy[kkk]=hy[0];
	hxx[0]=hxx[xxx];
	hxx[xxx]=hxx[kkk];
	hxx[kkk]=hxx[0];
	hyy[0]=hyy[xxx];
	hyy[xxx]=hyy[kkk];
	hyy[kkk]=hyy[0];
	kkk--;
	down();
}
int main()
{
	scanf("%d%d%d%d%d",&n,&m,&ma,&mb,&k);
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=m;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}
	q[1][1]=a[1][1];
	for(i=2;i<=m;i++)
	{
		q[1][i]=(q[1][i-1]+a[1][i]);
	}
	for(i=2;i<=n;i++)
	{
		q[i][1]=(q[i-1][1]+a[i][1]);
	}
	for(i=2;i<=n;i++)
	{
		for(j=2;j<=m;j++)
		{
			q[i][j]=(a[i][j]+q[i-1][j]+q[i][j-1]-q[i-1][j-1]);
		}
	}
	for(i=1;i<=(n-ma+1);i++)
	{
		for(j=1;j<=(m-mb+1);j++)
		{
			ax=i,ay=j,axx=i+ma-1,ayy=j+mb-1;
			qzh=ewqzh(ax,ay,axx,ayy);
			has=(qzh*11+ax*291143%12255871+ay*38833%12255871+axx*999983%12255871+ayy*122777%12255871)%12255871;
			pc[has]=1;
			hass=(qzh*13+ax*38833%12255871+ay*291143%12255871+axx*122777%12255871+ayy*999983%12255871)%12255871;
			pcc[has]=1;
			hasss=(qzh*13+ax*83%91815541+ay*89%91815541+axx*97%91815541+ayy*29%91815541)%91815541;
			pccc[hasss]=1;
			hasss=(qzh*2179+ax*29123%21788233+ay*113%21788233+axx*97%21788233+ayy*61%21788233)%21788233;
			pcccc[hassss]=1;
			add(qzh,ax,ay,axx,ayy);
		}
	}
	for(i=1;i<=k-1;i++)
	{
		ax=hx[1]-1,ay=hy[1],axx=hxx[1],ayy=hyy[1];
		if(ax>=1)
		{
			qzh=ewqzh(ax,ay,axx,ayy);
			has=(qzh*11+ax*291143%12255871+ay*38833%12255871+axx*999983%12255871+ayy*122777%12255871)%12255871;
			hass=(qzh*13+ax*38833%12255871+ay*291143%12255871+axx*122777%12255871+ayy*999983%12255871)%12255871;
			hasss=(qzh*13+ax*83%91815541+ay*89%91815541+axx*97%91815541+ayy*29%91815541)%91815541;
			hassss=(qzh*2179+ax*29123%21788233+ay*113%21788233+axx*97%21788233+ayy*61%21788233)%21788233;
			if(pc[has]!=1||pcc[hass]!=1||pccc[hasss]!=1||pcccc[hassss]!=1)
			{
				pc[has]=1;
				pcc[hass]=1;
				pccc[hasss]=1;
				pcccc[hassss]=1;
				add(qzh,ax,ay,axx,ayy);
			}
		}
		ax=hx[1],ay=hy[1]-1,axx=hxx[1],ayy=hyy[1];
		if(ay>=1)
		{
			qzh=ewqzh(ax,ay,axx,ayy);
			has=(qzh*11+ax*291143%12255871+ay*38833%12255871+axx*999983%12255871+ayy*122777%12255871)%12255871;
			hass=(qzh*13+ax*38833%12255871+ay*291143%12255871+axx*122777%12255871+ayy*999983%12255871)%12255871;
			hasss=(qzh*13+ax*83%91815541+ay*89%91815541+axx*97%91815541+ayy*29%91815541)%91815541;
			hassss=(qzh*2179+ax*29123%21788233+ay*113%21788233+axx*97%21788233+ayy*61%21788233)%21788233;
			if(pc[has]!=1||pcc[hass]!=1||pccc[hasss]!=1||pcccc[hassss]!=1)
			{
				pc[has]=1;
				pcc[hass]=1;
				pccc[hasss]=1;
				pcccc[hassss]=1;
				add(qzh,ax,ay,axx,ayy);
			}
		}
		ax=hx[1],ay=hy[1],axx=hxx[1]+1,ayy=hyy[1];
		if(axx<=n)
		{
			qzh=ewqzh(ax,ay,axx,ayy);
			has=(qzh*11+ax*291143%12255871+ay*38833%12255871+axx*999983%12255871+ayy*122777%12255871)%12255871;
			hass=(qzh*13+ax*38833%12255871+ay*291143%12255871+axx*122777%12255871+ayy*999983%12255871)%12255871;
			hasss=(qzh*13+ax*83%91815541+ay*89%91815541+axx*97%91815541+ayy*29%91815541)%91815541;
			hassss=(qzh*2179+ax*29123%21788233+ay*113%21788233+axx*97%21788233+ayy*61%21788233)%21788233;
			if(pc[has]!=1||pcc[hass]!=1||pccc[hasss]!=1||pcccc[hassss]!=1)
			{
				pc[has]=1;
				pcc[hass]=1;
				pccc[hasss]=1;
				pcccc[hassss]=1;
				add(qzh,ax,ay,axx,ayy);
			}
		}
		ax=hx[1],ay=hy[1],axx=hxx[1],ayy=hyy[1]+1;
		if(ayy<=m)
		{
			qzh=ewqzh(ax,ay,axx,ayy);
			has=(qzh*11+ax*291143%12255871+ay*38833%12255871+axx*999983%12255871+ayy*122777%12255871)%12255871;
			hass=(qzh*13+ax*38833%12255871+ay*291143%12255871+axx*122777%12255871+ayy*999983%12255871)%12255871;
			hasss=(qzh*13+ax*83%91815541+ay*89%91815541+axx*97%91815541+ayy*29%91815541)%91815541;
			hassss=(qzh*2179+ax*29123%21788233+ay*113%21788233+axx*97%21788233+ayy*61%21788233)%21788233;
			if(pc[has]!=1||pcc[hass]!=1||pccc[hasss]!=1||pcccc[hassss]!=1)
			{
				pc[has]=1;
				pcc[hass]=1;
				pccc[hasss]=1;
				pcccc[hassss]=1;
				add(qzh,ax,ay,axx,ayy);
			}
		}
		pop(1);
	}
	printf("%d\n",h[1]);
}

4hash爆70,以后有时间找一个更好的判重方法!
休息一下吧,去看耶稣好不好?

再来一题:
3186. 蜡笔 (Standard IO)
Time Limits: 5000 ms Memory Limits: 262144 KB Detailed Limits
Goto ProblemSet

Description
ABC生日收到N支蜡笔,每支蜡笔的颜色是三原色红绿蓝的组合,第i个蜡笔的颜色用Ri表示红色,Gi表示绿色,Bi表示蓝色。

蜡笔i和蜡笔j的颜色差异定义为max(|Ri-Rj|,|Gi-Gj|,|Bi-Bj|),多支蜡笔的颜色差异定义为其中任意两个蜡笔颜色的最大差异值。

ABC想从N支蜡笔中选出K支出来,要求这K支蜡笔的颜色差异值最小。

Input
第一行输入N和K(2<=K<=N<=100,000)

接下来N行输入每支蜡笔的颜色值Ri,Gi,Bi(0<=Ri,Gi,Bi<=255)。

Output
输出最小颜色差异值。

Sample Input
输入1:

2 2

1 3 2

2 6 4

输入2:

3 2

3 3 4

1 6 4

1 1 2

输入3:

5 3

6 6 4

6 2 7

3 1 3

4 1 5

6 2 6

Sample Output
输出1:

3

输出2:

2

输出3:

2

Data Constraint
50%的数据满足0<=Ri,Gi,Bi<=20;

80%的数据满足0<=Ri,Gi,Bi<=50。

二分+三维前缀和:

#include<bits/stdc++.h>
using namespace std;
long long n,kkk,i,j,k,a[1111111],b[1111111],c[1111111],ans=99999999,star=0,q[301][301][301],kkg=260;
inline long long swqzh(int aa,int bb,int cc,int i,int j,int k)
{
	return (q[aa][bb][cc]-q[i-1][bb][cc]-q[aa][j-1][cc]-q[aa][bb][k-1]+q[i-1][j-1][cc]+q[aa][j-1][k-1]+q[i-1][bb][k-1]-q[i-1][j-1][k-1]);
}
bool check(int xd)
{
	int kl=0;
	for(int i=1;i<=(255-xd+1);i++)
	{
		int aa=i+xd;
		for(int j=1;j<=(255-xd+1);j++)
		{
			int bb=j+xd;
			for(int k=1;k<=(255-xd+1);k++)
			{
				int cc=k+xd;
				int kkgg=swqzh(aa,bb,cc,i,j,k);
//				cout<<i<<" "<<j<<" "<<k<<" "<<aa<<" "<<bb<<" "<<cc<<" "<<kkgg<<endl;
				if(kkgg>kl)
				{
					kl=kkgg;
				}
			}
		}
	}
	if(kl>=kkk) return true;
	return false;
}
int main()
{
	scanf("%lld%lld",&n,&kkk);
	for(i=1;i<=n;i++)
	{
		scanf("%lld%lld%lld",&a[i],&b[i],&c[i]);
		q[a[i]][b[i]][c[i]]++;
	}
	for(i=1;i<=kkg;i++)
	{
		for(j=1;j<=kkg;j++)
		{
			for(k=1;k<=kkg;k++)
			{
				q[i][j][k]+=q[i][j][k-1];
			}
		}
	}
	for(i=1;i<=kkg;i++)
	{
		for(j=1;j<=kkg;j++)
		{
			for(k=1;k<=kkg;k++)
			{
				q[i][j][k]+=q[i][j-1][k];
			}
		}
	}
	for(i=1;i<=kkg;i++)
	{
		for(j=1;j<=kkg;j++)
		{
			for(k=1;k<=kkg;k++)
			{
				q[i][j][k]+=q[i-1][j][k];
			}
		}
	}
	int l=1,r=256,mid;
	mid=(l+r)/2;
	while(l<r)
	{
		if(check(mid))
		{
			r=mid;
		}
		else
		{
			l=mid+1;
		}
		mid=(l+r)/2;
	}
//	cout<<check(3)<<endl;
	ans=l;
	printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值