AI计算病理学(wsi,因果)

AI计算病理学(wsi,因果)

Bi-directional Weakly Supervised KnowledgeDistillation for Whole Slide lmage Classification(NeurlIPS 2022)

双向若监督知识蒸馏WSI分类

临床问题:WSI诊断

  1. TASK1-global(slide-level)classification(patient级别,阴性阳性)
  2. TASK2-instance(patch-level)localization(病变位置)

挑战:

  1. WSI图像很大(5w * 5w,传统224 * 224)

    解决:通常把slide切成小patch(512 * 512),patch很多,有gigapixel的问题

  2. 传统一张图一个标注,一个slide成千上万个patch,每个patch标注困难(做不到细粒度),slide标注简单,上万的patch只有一个标注,weak label

通常学术界使用:Multiple Instance Learning Formulation

slide切出来的patch共同对应一个bag,bag里有很多instance(patches)

  1. 对于阴性slide,切出来的patch都是阴性
  2. 对于阳性slide,切出来的patch至少存在一块阳性patch

找到slide级分界面(对应task1),把每一个bag分开

找到潜在的分界面把阳性patch分隔开(task2)

当前主流:

Instance-based Multiple Instance Learning Methods

对于每个Instance,训练一个DNN分类器,对于每个Instance预测,所有分数pooling后输出final score

这种方法存在问题:

没有每个Instance的label,需要给每个Instance伪标签,简单来说,阳性都给阳,阴性都给阴,但是阳性不一定都是阳性的patch,存在大量noise,计算损耗比较大。

Bag-based Multiple Instance Learning Methods

bag中每个instance提取representation,对每个representation聚合,得到final representation再通过FC进行打分

避免了noise

Attention-based MIL(ICML 2018)

每个instance的重要程度不同,新做一个小网络,输出attention对每个patch赋予不同权重

Non-local-attention-based MIL (CVPR 2021)
Transformer-based MIL (NIPS 2021)

存在缺点:(bag中阳性instance程度不一样,有的肿瘤区域大有的小,识别难难易程度不一样)

这些方法的loss定义在bag级别,attention model找到最容易识别的位置就收敛了,但是很难找到hard positive,无法识别困难的区域

WENO

用弱监督知识蒸馏方式集合bag级别的attention和instance级attention

Interventional Bag Multi-Instance Learning On Whole-Slide Pathological Images(CVPR 2023)

基于因果干预的WSI多实例学习方法

WSI通常被定义为多instance学习问题,临床上通常只有整张图的结果

现有工作:Existing bag-level MIL: Two-stage paradigm

better feature extractor,better aggregator,发展到无监督

现在方法存在问题:

Biased bag classification

bias1(dataset bias):阳性染成了粉色,阴性染成了紫色,误导模型,粉色切片越多倾向为阳性

bias2(attention bias):silde判断对了,但是attention聚焦的地方是不合理的

bias可以归结为bag contextual prior:信息被来自同一个类别的包共享,但是这些信息和实际类别无关

改进模型无法避免,从因果推断角度改进:

Struct casual model for MIL

C:bag contextual prior

Y:prediction

X:Bag输入图片

C->X:This link reflects the generation of whole-slideimages.数据生成的过程

X->Y:模型通过病理图里的真实的content做预测

C->Y:模型预测同时受到上下文先验的影响

C在因果中实际开启了 XY的backdoor ,XY之间的伪相关

提出了三阶段范式:A three-stage paradigm: Interventional Bag Multi-Instance Learning(IBMIL)

额外阶段:干预训练,打断C->X,迫使网络学X->Y的因果性

使用模式:因果推断中的后门调整模式在这里插入图片描述

1.聚类找出聚类中心(WSI上全局聚类通常能得到一个视觉的bias,这个是混杂信息)

2.和新来的bag的feature特征融合,上面用cross-attention

3.对混杂区定义先验分布,这里用均匀分布

近似,上面求积分的过程需要forward很多次,需要求近似,求和过程放到特征层,forward一次

这个和模型和任务无关的。

图卷积网络驱动的组织病理图像智能分析方法研究

报告,总结成果

诊断:

  1. 病理ROI分类:癌症确诊,癌症分型
  2. 病例WSI分类:癌症分型,癌症分期

CNN只能捕获欧式数据的局部相邻信息

GCN可以对非欧式数据进行表示学习

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
利用多实例学习(Multiple Instance Learning, MIL)对WSI(Whole Slide Imaging)图像进行分割的一般步骤如下: 1. 数据准备: - 获取WSI图像数据集,其中每个WSI图像可能包含多个区域,每个区域可能包含多个实例(例如细胞)。 - 对每个WSI图像,标注出感兴趣区域(Region of Interest, ROI)以及相应的实例标签。 2. 特征提取: - 针对每个ROI,提取特征来表示该区域的视觉信息。常用的特征包括颜色直方图、纹理特征、形状特征等。 3. 实例级别标签生成: - 对于每个ROI,根据其中的实例标签生成一个实例级别的标签。有多种方法可用,例如:包含正样本的ROI标记为正例,不包含正样本但包含负样本的ROI标记为不确定例,不包含任何样本的ROI标记为负例。 4. 多实例学习模型训练: - 使用MIL算法进行模型训练。MIL是一种弱监督学习算法,其中每个训练样本都由一个或多个实例组成,并且样本级别的标签只有正例和负例。 - 常用的MIL算法包括经典的MIL算法、MIL with Multiple Instance Representation (MIL-MIR)等。 5. 分割预测: - 对于新的WSI图像,首先对其进行分割,得到多个ROI。 - 对于每个ROI,提取特征,并使用训练好的MIL模型进行预测。根据预测结果,可以得到每个ROI的实例级别的标签。 需要注意的是,WSI图像的分割是一个复杂任务,常常需要使用深度学习等方法,并结合大量的标注数据和计算资源来训练和优化模型。同时,还需要根据具体应场景进行一些调整和改进,以获得更好的分割效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值