Transformer模型

Transformer论文

Attention is all you need.

Transformer概述

对于RNN,由于当前输入依赖于上一个输出,所以存在 不能并行处理 的问题。

Trasnformer是完全基于自注意力机制的一个深度学习模型,可以并行化计算
在这里插入图片描述

Trnsformer最早用在翻译任务上,是一个Encoder-Decoder(编码器,解码器)的结构。

在这里插入图片描述

Transformer应用场景

在这里插入图片描述

Transformer适合序列到序列的任务,比如机器翻译,文本的情感分析,看图说话等。

Transformer的输入

在这里插入图片描述

不用 独热编码One-Hot Encoding的原因:其一是表示出来的向量可能很长,其二是不能表达词与词之间的关系。

词向量嵌入Word Embedding

另一种词的表示方法,能够体现词与词之间的关系。通过将词映射为连续的向量,使得语义上相似的词在向量空间中的位置相近,从而捕捉到了词之间的语义关系。
常用的词嵌入模型
词嵌入模型: 利用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值