1. Transformer模型概述
Transformer是一种基于自注意力机制的神经网络架构,由Vaswani等人在2017年的论文《Attention Is All You Need》中首次提出。这种模型最初是为了改善机器翻译任务而设计的,其创新之处在于摒弃了传统的循环神经网络(RNN)结构,转而使用注意力机制来处理序列数据。
Transformer模型的核心优势在于其能够并行处理序列中的所有元素,这极大地提高了模型的训练效率。此外,由于其优秀的泛化能力,Transformer模型很快在自然语言处理(NLP)领域的其他任务中展现出了卓越的性能,包括文本摘要、情感分析、问答系统等。
Transformer模型的关键在于以下几个核心特性:
-
自注意力机制(Self-Attention):允许模型在编码或解码时关注序列中的不同部分,而不是依赖于序列中元素的固定顺序。这种机制使得模型能够捕捉长距离依赖关系,并且提高了计算效率。
-
多头注意力(Multi-Head Attention):通过并行地执行多个注意力函数,模型可以从不同的表示子空间中学习信息,这增强了模型捕获信息的能力。
-
位置编码(Positional Encoding):由于Transformer模型缺乏RNNs的固有序列处理能力,位置编码被添加到输入嵌入中,以提供序列中单词的位置信息。
-
残差连接和层归一化(Residual Connections and Layer Normalization):这些技术有助于避免深层网络训练中的梯度消失问题,并使得模型可以有效地训练更深的网络。
-
可扩展性:Transformer模型的设计允许其容易地扩展到更大的模型尺寸和更复杂的任务中。
-
泛化能力:Transformer模型不仅在NLP领域表现出色,还被扩展应用到图像处理、语音识别等其他领域,显示出良好的跨领域泛化能力。
这些特性共同构成了Transformer模型的基础,使其成为当前深度学习中最重要的模型之一。随着研究的深入,Transformer模型及其变体在各种任务中都取得了显著的成果。
2. Transformer模型结构
2.1 Encoder架构
Transformer模型的Encoder部分由多个相同的层(通常是6层)堆叠而成,每层主要由两部分组成:多头自注意力机制(Multi-Head Self-Attention)和位置前馈全连接网络(Position-wise Fully Connected Feed-Forward Network)。
多头自注意力机制:该机制允许模型在编码单词时,不仅关注该单词本身,还能捕捉到句子中其他单词的信息。这种机制通过计算单词间的注意力分数实现,公式如下:
其中,、
、
分别代表查询(Query)、键(Key)、值(Value)矩阵,
是键向量的维度,
用于缩放点积以防止梯度消失问题。
位置前馈全连接网络:在自注意力层之后,每个位置的输出会通过一个前馈网络进行进一步的非线性变换,公式为:
这里,、
和
、
分别是前馈网络的权重和偏置。
2.2 Decoder架构
Decoder同样由多个相同的层堆叠而成,每层包括三个主要部分:遮蔽多头自注意力、Encoder-Decoder注意力和位置前馈全连接网络。
遮蔽多头自注意力:与Encoder中的自注意力类似,但加入了遮蔽(Mask)机制,确保在预测下一个词时,只能看到已经生成的词,避免信息泄露。公式与Encoder中的自注意力相同。
Encoder-Decoder注意力:Decoder层通过这一层关注Encoder的输出,帮助模型在生成翻译或回应时,关注输入序列中的关键部分。公式为:
其中, 是来自Decoder上一层