O奖论文F题
为了建立国家高等教育健康指数评价模型,我们考虑了5个优指标和23个较差指标。我们进行复杂但有意义的数据处理,并使用不同的方法来转发和标准化数据。考虑到计算权重的误差,我们综合了主观分析层次过程、客观熵权法和变异系数法,最大限度地消除了主观误差和数据误差,采用组合权重法使模型更加准确。然后采用TOPSIS综合评价方法计算NHHE。最后,我们将40个国家纳入其评价模型,并对其计算结果进行了模糊聚类分析。绘制三条标准线,NHHE评分大于0.5的定义为超健康。得分在0.36-0.5之间定义为不健康,小于0.22之间定义为不健康
1、最大归一化方法:
原理:
1,标准归一化。
将原始数据集归一化为均值为0、方差1的数据集,归一化公式如下:
x∗=x−μδ
x∗=x−μδ
其中 μμ为所有样本数据的均值, δδ为所有样本数据的标准差。
2,最大最小归一化。
将原始数据线性化的方法转换到[0 1]的范围,归一化公式如下:
x∗=x−xminxmax−xmin
x∗=x−xminxmax−xmin
https://blog.csdn.net/xiaotao_1/article/details/79077293?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~aggregatepage~first_rank_ecpm_v1~rank_v31_ecpm-2-79077293.pc_agg_new_rank&utm_term=%E6%9C%80%E5%A4%A7%E6%9C%80%E5%B0%8F%E5%BD%92%E4%B8%80%E5%8C%96%E6%96%B9%E6%B3%95&spm=1000.2123.3001.4430
使用场景:
经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。
归一化是让不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。并且深度学习中数据归一化可以防止模型梯度爆炸。
https://blog.csdn.net/weixin_41861700/article/details/103100243?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1.pc_relevant_default
2、们的组合加权方法结合了主观加权法中的解析层次过程(AHP)和客观加权法中的熵权法(EWM)和客观加权法中的变异系数法(CVM)