前言:感觉北理的机器学习MOOC我听的迷迷糊糊的,明年继续吧,新年快乐咯!
五、降维之PCA
主成分分析(PCA)
是最常用的一种降维方法
应用:高维数据集的探索与可视化
用作数据压缩和预处理
PCA可以把具有相关性的高位变量合成线性无关的低维变量,称为主成分。主成分
能够尽可能保留原始数据的信息。
方差
协方差
特征向量
原理:
六、非负矩阵方法以及实例应用
非负矩阵分解是在矩阵中所有元素均为非负数约束条件下的矩阵分解方法
分解出W(特征矩阵)和H(系数矩阵)相乘
广泛应用于:图像分析、文本挖掘和语音处理
六、监督学习
训练集、测试集
分类
评价分类器
评价标准
精确率
召回率
准确率 预测对的/所有
回归分析
根据自变量估计因变量的条件期望
七、分类
1、人体运动信息
2、分类模型
KNN K近邻分类器
决策树算法
朴素贝叶斯分类器