害虫检测:Meta-learning for Few-Shot Insect PestDetection in Rice Crop

本文提出了一种基于元学习的少样本害虫检测技术,旨在解决农业田间害虫检测中大样本训练数据需求的问题。通过在IP102数据集上进行元训练,生成预训练权重,然后在ICAR-NBAIR数据集上进行少样本目标检测,实现了对新害虫类别的快速学习和检测。模型结合了SSD和YoloV3,实验结果显示模型在不同数据集和样本数量下表现出良好性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文原文下载见本文末尾

 Abstract

        深度学习领域的最新进展有助于准确地预测和定位农业田间图像中的害虫。这种方法的缺点是需要对每个样本都有一个大的训练数据集,这是不可行的。由于有各种各样的害虫,为每个样本收集成千上万张训练图像是不切实际的。针对如何解决这一问题,本文提出了一种基于少样本的害虫检测元学习技术。在这项工作中,考虑对水稻作物的害虫进行实验。两个害虫图像数据集: IP102作为支持进行元学习的数据集和害虫图像库被称为印度农业研究委员会-国家农业昆虫资源局(ICAR-NBAIR)被用来进行少样本学习。在元学习阶段,所提出的模型是对各种害虫进行训练的,因此所提出的系统能够用很少的训练图像学习新的害虫类别。 

        简单的说:论文的主要创新点在于利用元学习进行少样本目标检测

 1 Introduction

        核心点:提出了一种只需要很少的训练样本来训练预测模型来识别作物害虫的技术,这是实际可行的。根据农民的需求,该模型可以扩展到其他各种害虫的检测。 

2 Related Work

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值