论文原文下载见本文末尾
Abstract
深度学习领域的最新进展有助于准确地预测和定位农业田间图像中的害虫。这种方法的缺点是需要对每个样本都有一个大的训练数据集,这是不可行的。由于有各种各样的害虫,为每个样本收集成千上万张训练图像是不切实际的。针对如何解决这一问题,本文提出了一种基于少样本的害虫检测元学习技术。在这项工作中,考虑对水稻作物的害虫进行实验。两个害虫图像数据集: IP102作为支持进行元学习的数据集和害虫图像库被称为印度农业研究委员会-国家农业昆虫资源局(ICAR-NBAIR)被用来进行少样本学习。在元学习阶段,所提出的模型是对各种害虫进行训练的,因此所提出的系统能够用很少的训练图像学习新的害虫类别。
简单的说:论文的主要创新点在于利用元学习进行少样本目标检测
1 Introduction
核心点:提出了一种只需要很少的训练样本来训练预测模型来识别作物害虫的技术,这是实际可行的。根据农民的需求,该模型可以扩展到其他各种害虫的检测。