Diffusion模型解读(扩散模型)

本文介绍了Diffusion模型作为生成模型的一种,其通过前向过程逐渐加噪,后向过程从噪声中恢复图像,解决了GAN训练的稳定性和多样性问题。前向过程涉及权重项随噪声增加而增大的规律,逆向过程利用贝叶斯公式推导重建图像的步骤。在训练和采样阶段,模型使用Unet结构预测噪声并逐步重构图像。提供的代码解析详细阐述了实现过程。
摘要由CSDN通过智能技术生成

相关代码链接见文末

1.概述

        

        在生成模型中,GAN存在着许多问题,例如GAN需要训练生成器和判别器,训练不够问题,且GAN生成器的主要目标是“骗”过判别器,可能导致生成结果缺乏多样性。Diffusion模型提供了一种不同的解决问题的途径,它包含2个过程,前向过程逐步向图像中加入高斯噪声。而后向过程则要求模型从高斯噪声中还原图像。这种方法的优势在于它直接在数据分布上进行建模,而不是像GAN那样通过对抗过程,这可以在一定程度上缓解训练稳定性的问题,并且能够生成更多样化的数据,因为它关注于从高斯噪声状态逐步恢复出所有可能的原始数据状态。

2.前向过程

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值