相关代码链接见文末
1.概述
在生成模型中,GAN存在着许多问题,例如GAN需要训练生成器和判别器,训练不够问题,且GAN生成器的主要目标是“骗”过判别器,可能导致生成结果缺乏多样性。Diffusion模型提供了一种不同的解决问题的途径,它包含2个过程,前向过程逐步向图像中加入高斯噪声。而后向过程则要求模型从高斯噪声中还原图像。这种方法的优势在于它直接在数据分布上进行建模,而不是像GAN那样通过对抗过程,这可以在一定程度上缓解训练稳定性的问题,并且能够生成更多样化的数据,因为它关注于从高斯噪声状态逐步恢复出所有可能的原始数据状态。
2.前向过程