数据及代码见文末
代码解读:谷歌开源项目BERT源码解读与应用实例-CSDN博客
基于BERT的中文情感分析实战:基于BERT的中文情感分析实战-CSDN博客
1.概述
问题背景:
-
传统Seq2Seq模型的局限性: 早期的机器翻译和文本生成任务常采用基于循环神经网络(RNN)的序列到序列(Seq2Seq)模型,这类模型在处理长序列时容易遇到梯度消失/爆炸问题,导致训练效率低,难以捕捉长期依赖。
-
RNN网络的问题: RNN及其变种如LSTM和GRU在网络结构
代码解读:谷歌开源项目BERT源码解读与应用实例-CSDN博客
基于BERT的中文情感分析实战:基于BERT的中文情感分析实战-CSDN博客
问题背景:
传统Seq2Seq模型的局限性: 早期的机器翻译和文本生成任务常采用基于循环神经网络(RNN)的序列到序列(Seq2Seq)模型,这类模型在处理长序列时容易遇到梯度消失/爆炸问题,导致训练效率低,难以捕捉长期依赖。
RNN网络的问题: RNN及其变种如LSTM和GRU在网络结构