Medical transformer源码解读

本文深入探讨Medical Transformer的实现细节,包括数据预处理和网络结构。数据预处理涉及图像裁剪和色彩增强,网络结构重点在于全局和局部特征提取。全局特征通过下采样和Gate Axis Attention提取,局部特征则采用类似方法但不包含位置编码。网络结构中,编码器和解码器结合,用于图像特征的提取和放大,最终输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码链接见文末

1.数据预处理

        数据预处理部分比较常规,进行了一下裁剪和色彩增强操作,比较简单,不在多说。另外,官方github上提供了数据

2.网络结构

全局特征提取

                首先,为了节省运算,经过卷积对特征图进行下采样,下采样至64*64大小,然后将结果输入堆叠的Gate Aixal Attention中,进行特征提取。

  Gate Aixal Attention:

        Aixal Attention分别对H轴和W轴进行自注意力机制运算,具体过程为:

  • 首先经过线性投影得到q,k,v,需要注意的是q为8个通道,k为8个通道,v为16个通道,因为v要汇集两个轴的信息。
  • 随机初始化可以学习的位置编码r,维度为4,H,W,其中q的维度为1,H,W,K的维度为1,H,W,V的维度为2,H,W
  • 如下图所示,首先求得qk,qr,kr,并对qr和kr使用Gk,Gq抑制因子对qr和kr的影响进行抑制。然后汇集qk和qr、kr的信息,具体为先拼接再求和,最后经过softmax归一化得到注意力权重
  • 求得qkv和qkr,并使用门控抑制因子进行抑制,然后融合特征和位置编码(先拼接再求和)得到注意力计算结果

嗨!对于Transformer源码解读,我可以给你一些基本的指导。请注意,我不能提供完整的源代码解读,但我可以帮助你理解一些关键概念和模块。 Transformer是一个用于自然语言处理任务的模型,其中最著名的应用是在机器翻译中。如果你想要深入了解Transformer的实现细节,我建议你参考谷歌的Transformer源码,它是用TensorFlow实现的。 在Transformer中,有几个关键的模块需要理解。首先是"self-attention"机制,它允许模型在处理序列中的每个位置时,同时关注其他位置的上下文信息。这个机制在Transformer中被广泛使用,并且被认为是其性能优越的主要原因之一。 另一个重要的模块是"Transformer Encoder"和"Transformer Decoder"。Encoder负责将输入序列转换为隐藏表示,而Decoder则使用这些隐藏表示生成输出序列。Encoder和Decoder都由多个堆叠的层组成,每个层都包含多头自注意力机制和前馈神经网络。 除了这些核心模块外,Transformer还使用了一些辅助模块,如位置编码和残差连接。位置编码用于为输入序列中的每个位置提供位置信息,以便模型能够感知到序列的顺序。残差连接使得模型能够更好地传递梯度,并且有助于避免梯度消失或爆炸的问题。 了解Transformer源码需要一定的数学和深度学习背景知识。如果你对此不太了解,我建议你先学习相关的基础知识,如自注意力机制、多头注意力机制和残差连接等。这样你就能更好地理解Transformer源码中的具体实现细节。 希望这些信息对你有所帮助!如果你有任何进一步的问题,我会尽力回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值