leetcode 491.递增子序列
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。
示例:
输入: [4, 6, 7, 7]
输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]
本题咋一看和leetcode 90.子集II很像,同样都是取整型数组的子集,并且进行去重操作,但其实有很大的区别。因为本题求的是该数组的递增子序列,而如果使用 子集II 中的方法,在进行去重操作前要先将数组排序,这样排序完后的数组就全都是递增子序列了,就与题目要求我们输出的目标不符。
抽象为树型结构如下图所示:
回溯三部曲
确定递归函数的参数和返回值
本题求的是子序列,相当于是子集,所以需要一个startIndex。传入参数还有整型数组nums。
递归函数是void类型,无返回值。
同样需要定义两个全局变量分别用来记录单次符合条件的结果和结果集。
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, int startIndex)
确定终止条件
本题其实类似求子集问题,也是要遍历树形结构找每一个节点,所以可以不加终止条件,startIndex每次都会加1,并不会无限递归。
但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:
if(path.size() > 1){
result.push_back(path);
// 注意这里不要加return,因为要取树上的所有节点
}
确定单层搜索的逻辑
同一父节点下的同层上使用过的元素就不能再使用了
代码如下:
unordered_set<int> uset; // 使用set对本层元素进行去重
for(int i = startIndex; i < nums.size(); i++){
if((!path.size() && nums[i] < path.back()) // 所取的nums[i]小于path中最后一个元素的值
|| uset.find(nums[i]) != uset.end()){ // 在uset中找到了nums[i]
continue;
}
uset.insert(nums[i]);
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
递归函数的uset.insert(nums[i]);,下面却没有对应的pop之类的操作,这也是需要注意的点,这是因为unordered_set<int> uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以uset只负责本层。
整体代码如下:
class Solution {
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, int startIndex){
if(path.size() > 1){
result.push_back(path);
}
unordered_set<int> uset;
for(int i = startIndex; i < nums.size(); i++){
if((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()){
continue;
}
uset.insert(nums[i]);
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums, 0);
return result;
}
};
优化
以上代码使用了unordered_set<int>来记录本层元素是否重复使用。
其实用数组来做哈希,效率就高了很多。
注意题目中说了,数值范围[-100,100],所以完全可以用数组来做哈希。
程序运行的时候对unordered_set 频繁的insert,unordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。
那么优化后的代码如下:
class Solution {
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, int startIndex){
if(path.size() > 1){
result.push_back(path);
}
int uset[201] = {0};
for(int i = startIndex; i < nums.size(); i++){
if((!path.empty() && nums[i] < path.back())
|| uset[nums[i] + 100] == 1){
continue;
}
uset[nums[i] + 100] = 1;
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums, 0);
return result;
}
};
leetcode 46.全排列
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]
全排列本质上就是暴力搜索,所以用回溯法。
回溯三部曲
确定递归函数的参数和返回值
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
代码如下:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, vector<bool>& used)
确定终止条件
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
代码如下:
if(path.size() == nums.size()){
result.push_back(path);
return;
}
确定单层搜索的逻辑
排列问题每次都要从头开始搜索,故不使用startIndex。
for(int i = 0; i < nums.size(); i++){
if(used[i] == true)
continue;
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
整体代码如下:
class Solution {
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, vector<bool>& used){
if(path.size() == nums.size()){
result.push_back(path);
return;
}
for(int i = 0; i < nums.size(); i++){
if(used[i] == true)
continue;
path.push_back(nums[i]);
used[i] = true;
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
}
public:
vector<vector<int>> permute(vector<int>& nums) {
vector<bool> used(nums.size(), false);
backtracking(nums, used);
return result;
}
};
leetcode 47.全排列II
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
输入:nums = [1,1,2]
输出: [[1,1,2], [1,2,1], [2,1,1]]
这道题就涉及到去重的逻辑了,要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:
图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
去重逻辑代码框架前面已经使用多次,这次也直接拿来套用即可:
class Solution {
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, vector<bool>& used){
if(path.size() == nums.size()){
result.push_back(path);
return;
}
for(int i = 0; i < nums.size(); i++){
// used[i - 1] == true,说明同一树枝nums[i - 1]使用过
// used[i - 1] == false,说明同一树层nums[i - 1]使用过
// 如果同一树层nums[i - 1]使用过则直接跳过
if(i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false){
continue;
}
if(used[i] == true)
continue;
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
}
public:
vector<vector<int>> permuteUnique(vector<int>& nums) {
vector<bool> used(nums.size(), false);
sort(nums.begin(), nums.end()); // 排序不要忘了
backtracking(nums, used);
return result;
}
};