蚁群算法(AI导论)


个人理解,有错欢迎评论留言!毕竟也不想误人子弟!哈哈哈!

基本原理

概要:
仿照蚂蚁觅食过程中信息素的累计与挥发效应的启发式搜索算法。
详细介绍:
蚂蚁在运动过程中,根据各个路径上的信息素和启发信息按概率决定转移方向。
在 t 时刻蚂蚁 k 选择从元素(城市)x 转移到元素(城市)y 的概率:
P x y k ( t ) = { [ τ x y ] α [ η x y ] β ∑ y ϵ a l l o w e d k ( x ) [ τ x y ] α [ η x y ] β , i f y ϵ a l l o w e d k ( x ) 0 , 其 他 P_{xy}^k(t)= \begin{cases} \frac{[\tau_{xy}]^\alpha[\eta_{xy}]^\beta}{\sum_{y\epsilon allowed_k(x)}[\tau_{xy}]^\alpha[\eta_{xy}]^\beta}, & if y\epsilon allowed_k(x) \\ 0,& 其他 \\ \end{cases} Pxyk(t)=yϵallowedk(x)[τxy]α[ηxy]β[τxy]α[ηxy]β,0,ifyϵallowedk(x)
各路径上信息素的消散规则:
τ x y ( t + 1 ) = ρ τ x y ( t ) + Δ τ x y ( t ) \tau_{xy}(t+1)=\rho\tau_{xy}(t)+\Delta\tau_{xy}(t) τxy(t+1)=ρτxy(t)+Δτxy(t)
蚁群的信息素浓度更新规则:
Δ τ x y ( t ) = ∑ k = 1 m Δ τ x y k ( t ) \Delta\tau_{xy}(t)=\sum_{k=1}^{m} \Delta\tau_{xy}^k(t) Δτxy(t)=k=1mΔτxyk(t)

代码实践

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小威程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值