绝对值不等式(贪心)

本文介绍了贪心算法的基础,并通过分析AcWing104.货仓选址问题来阐述其应用。当店铺数量为奇数时,选择中间店铺;为偶数时,选取中间位置的店铺,可以达到最小距离之和。提供了AC代码实现,并承诺后续会补充时间复杂度的详细说明和证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

复习acwing算法基础课的内容,本篇为讲解基础算法:贪心——绝对值不等式,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、贪心

贪心:利益最大化,即找到最优的情况,贪心问题难在证明,即你可能能推断出这个题目的正确解法,但是这个解法下为什么就是最优解不好证明。


二、AcWing 104. 货仓选址

本题链接:AcWing 104. 货仓选址
本博客提供本题截图:
在这里插入图片描述

本题解析

如果店铺的个数为奇数的时候,那么取最中间的店铺为距离之和最短:即选取(6 / 2)(0 ~ 6为7个店铺为奇数)
在这里插入图片描述
如果店铺的个数为偶数的时候,那么如下图所示的区间内的点都可以是我们货仓建立的地点,在这段区间内任何一点都有到所有店铺的距离之和最短:
在这里插入图片描述
那么为了我们方便代码的书写,取(7 / 3)的店铺,故综上所述,对于有这么n个排好序的店铺,我们都去(n / 2)号店铺作为货仓的地点即可

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n;
int q[N];

int main()
{
    scanf("%d", &n);

    for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);

    sort(q, q + n);

    int res = 0;
    for (int i = 0; i < n; i ++ ) res += abs(q[i] - q[n / 2]);

    printf("%d\n", res);

    return 0;
}

三、时间复杂度

关于贪心——绝对值不等式的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值