记忆化深搜求最短路+路径
1:兔子与樱花
总时间限制: 1000ms
内存限制: 65535kB
描述
很久很久之前,森林里住着一群兔子。有一天,兔子们希望去赏樱花,但当他们到了上野公园门口却忘记了带地图。现在兔子们想求助于你来帮他们找到公园里的最短路。
输入
输入分为三个部分。
第一个部分有P+1行(P<30),第一行为一个整数P,之后的P行表示上野公园的地点。
第二个部分有Q+1行(Q<50),第一行为一个整数Q,之后的Q行每行分别为两个字符串与一个整数,表示这两点有直线的道路,并显示二者之间的矩离(单位为米)。
第三个部分有R+1行(R<20),第一行为一个整数R,之后的R行每行为两个字符串,表示需要求的路线。
输出
输出有R行,分别表示每个路线最短的走法。其中两个点之间,用->(矩离)->相隔。
样例输入
6 Ginza Sensouji Shinjukugyoen Uenokouen Yoyogikouen Meijishinguu 6 Ginza Sensouji 80 Shinjukugyoen Sensouji 40 Ginza Uenokouen 35 Uenokouen Shinjukugyoen 85 Sensouji Meijishinguu 60 Meijishinguu Yoyogikouen 35 2 Uenokouen Yoyogikouen Meijishinguu Meijishinguu
样例输出
Uenokouen->(35)->Ginza->(80)->Sensouji->(60)->Meijishinguu->(35)->Yoyogikouen Meijishinguu
这是一道求任意两点最短路径+打印路径的题,由于本题数据小,所以我用记忆化深搜加回溯做的,代码如下
#include<bits/stdc++.h>
using namespace std;
map<string,int> mp1;
map<int,string> mp2;
int t,n,m,a,x,y,ans=9999999,w=-1;
string s1,s2;
int s[35][35]= {0},u[35]= {0};
int d[35],p[35];//memset(s,0,sizeof(s));//d为最终求得的最短路,p记录搜索过程中的路径
void Dfs(int x,int h,int num) {
if(x==y) {
if(num<ans) {//更新路径
for(int i=0; i<h; i++)
d[i]=p[i];
w=h;
ans=num;
return ;
}
}
for(int i=1; i<=t; i++) {
if(s[x][i]!=0&&num+s[x][i]<ans&&u[i]==0) {//num+s[x][i]<ans,枝剪
p[h++]=i;
u[i]=1;
num+=s[x][i];
Dfs(i,h,num);
h--;
u[i]=0;
num-=s[x][i];//回溯
}
}
}
int main() {
cin >> t;
for(int i=1; i<=t; i++) {
cin >> s1;
mp1[s1]=i;
mp2[i]=s1;
}
cin >> n;
while(n--) {
cin >> s1 >> s2 >> a;
s[mp1[s1]][mp1[s2]]=a;
s[mp1[s2]][mp1[s1]]=a;
}
cin >> m;
while(m--) {
ans=9999999,w=-1;
cin >> s1 >> s2;
x=mp1[s1],y=mp1[s2];
memset(d,0,sizeof(d));
memset(p,0,sizeof(p));
memset(u,0,sizeof(u));
// for(int i=1;i<=t;i++){
// for(int j=1;j<=t;j++)
// cout << s[i][j] << " ";
// cout << endl;
// }
Dfs(x,0,0);
cout << s1;
for(int i=0; i<w; i++) {
if(i==0)
cout << "->(" << s[x][d[i]] << ")->" << mp2[d[i]];
else
cout << "->(" << s[d[i-1]][d[i]] << ")->" << mp2[d[i]];
}
cout << endl;
}
return 0;
}
其实本题可以用佛洛伊德算法更好的解决,时间复杂度更低,可以参考以下代码
#include<iostream>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
int n,m,k;
string a[66];
int step[66][66],g[66][66];
map<string,int>mp;
const int inf=0x3f3f3f3f;
int s,e;
void init()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
g[i][j]=(i==j?0:inf);
step[i][j]=j;
}
}
}
void floyd()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
if(g[j][k]>g[j][i]+g[i][k])
{
g[j][k]=g[j][i]+g[i][k];
step[j][k]=step[j][i];
}
}
}
}
}
void display()
{
cout<<a[s];
int k=s;
while(k!=e)
{
cout<<"->("<<g[k][step[k][e]]<<")->"<<a[step[k][e]];
k=step[k][e];
}
cout<<endl;
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
mp[a[i]]=i;
}
init();
cin>>m;
for(int i=1;i<=m;i++)
{
string s1,s2;int d;
cin>>s1>>s2>>d;
g[mp[s1]][mp[s2]]=g[mp[s2]][mp[s1]]=d;
}
floyd();
cin>>k;
while(k--)
{
string s1,s2;cin>>s1>>s2;
s=mp[s1];e=mp[s2];
display();
}
return 0;
}
最小生成树问题
牛客:喜迎暑假多校联赛第一场H题:呜米喵想要成为爱抖露!
链接:https://ac.nowcoder.com/acm/problem/222737
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 524288K,其他语言1048576K
64bit IO Format: %lld
题目描述
这一天MeUmy的大草原上突然出现了一个anti,他用了一个奇怪的装置把呜米的直播账号给锁住了。并留下说明书后光速跑路!
解锁账号有两种方法!
一、
这个装置上有一个地图,上面有n座城市。还有一张数据表,表内有m条数据,表示了每个城市之前存在的交通路线,格式为三个整数A B C 代表A城市到B城市需要花费C元。 (路是双向的 出题人没见过单向的路....)
呜米需要用这些连接方式把所有城市连在一起,连接城市需要用到的交通路线的总花费小于K元,才能解锁自己的账号。
二、
只要呜米去翻垃圾桶,然后喝长毛的的奶茶。账号就会自动解锁!!!
因为呜米不想用第二方法,所以她把城市进行了编号1-n,然后把交通路线的数据发到了群里。求救!
这时一位gachi看不下去了,他对这个装置进行了改造,但是他比那个anti弱所以没办法直接解开,不过在他的不懈努力之下这个装置终于被他搞出了BUG。
本来这个装置在呜米连接好所有城市后会计算总花费。但因为那个bug导致这个装置,会把费用是质数的边当做费用为0。
比如A B C,代表A城市到B城市需要花费C元,C如果是质数,在用的时候费用算作0。
所以第一个方法完成的难度降低了。
输入描述:
第一行三个整数 n m k
1≤n≤m≤2∗1051\leq n \leq m \leq 2*10^{5}1≤n≤m≤2∗105 1≤k≤1091\leq k \leq 10^{9}1≤k≤109
以下m行每行三个整数 A B C
1≤A≤B≤n1\leq A\leq B\leq n1≤A≤B≤n 1≤C≤1071\leq C \leq 10^{7}1≤C≤107
输出描述:
如果第一种方法可以解锁账号 请输出:wmmxycwdjdwdlnljbzwtskirakira
本来应该输出这个但是qcjj说中文会炸(呜米喵想要成为大家的爱抖露 努力进步在舞台上kirakira)
如果需要第二种方法解锁账号 请输出:wmmxycwdjdwdlnljbzwtsfljt
本来应该输出这个但是qcjj说中文会炸(呜米喵想要成为大家的爱抖露 努力进步在舞台上翻垃圾桶)
输入
5 2 8 2 2 38 4 5 16
输出
wmmxycwdjdwdlnljbzwtsfljt
一道求最小生成树的题,只需对边进行排序,然后加边(这里要判断加的边是否连接两个独立的块),这里我用并查集进行判断,详情看代码
#include<bits/stdc++.h>
using namespace std;
bool p[10000005];
struct xxx {
int x,y,num;
} s[200005];
int f[200005];
bool cmp(xxx a,xxx b) {
return a.num<b.num;
}
int find(int x) {
return f[x]==x?x:f[x]=find(f[x]);//压缩路径f[x]=find(f[x])
}
void unit(int x,int y) {
int x1=find(f[x]),y1=find(f[y]);
f[x1]=y1;//合并根节点
}
int main() {
long long n,m,k,b=0,ans=0;
//素数
for(int i=1; i<=10000001; i++)
p[i]=true;
for(int i=2; i<=10000001; i++) {
for(int j=i+i; j<=10000001; j+=i) {
p[j]=false;
}
}
cin >> n >> m >> k;
for(int i=1; i<=n; i++)
f[i]=i;
for(int i=0; i<m; i++) {
scanf("%d %d %d",&s[i].x,&s[i].y,&s[i].num);
if(p[s[i].num])
s[i].num=0;
}
sort(s,s+m,cmp);
for(int i=0;i<m;i++){
if(b==n-1)
break;
int x=find(s[i].x),y=find(s[i].y);
if(x!=y) {
b++;
ans+=s[i].num;
unit(x,y);
}
}
// for(int i=0;i<m;i++)
// cout << s[i].x << " "<< s[i].y << " " << s[i].num << endl;
// cout << b << endl << ans << endl;
if(b==n-1&&ans<k)
cout << "wmmxycwdjdwdlnljbzwtskirakira" << endl;
else
cout << "wmmxycwdjdwdlnljbzwtsfljt" << endl;
return 0;
}