力扣热门算法题 152. 乘积最大子数组,153. 寻找旋转排序数组中的最小值,160. 相交链表

58 篇文章 1 订阅
55 篇文章 0 订阅
本文详细解析了LeetCode中的三个编程问题:乘积最大子数组的动态规划解法,寻找旋转排序数组中的最小值的二分查找策略,以及相交链表的双指针求解。提供了Python和Java的实现代码示例。
摘要由CSDN通过智能技术生成

152. 乘积最大子数组,153. 寻找旋转排序数组中的最小值,160. 相交链表,每题做详细思路梳理,配套Python&Java双语代码, 2024.03.28 可通过leetcode所有测试用例

目录

152. 乘积最大子数组

解题思路

完整代码

Python

Java

153. 寻找旋转排序数组中的最小值

解题思路

完整代码

Python

Java

160. 相交链表

解题思路

完整代码

Python

Java


152. 乘积最大子数组

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续

子数组

(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

示例 1:

输入: nums = [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。

示例 2:

输入: nums = [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

解题思路

可以使用动态规划的方法。对于数组中的每一个元素,我们需要考虑到达该元素位置时的最大乘积和最小乘积(负数乘以负数可能得到最大乘积)。这样,我们可以维护两个动态数组:maxDP 和 minDP,其中 maxDP[i] 表示以 nums[i] 结尾的子数组的最大乘积,minDP[i] 表示以 nums[i] 结尾的子数组的最小乘积。

对于每一个元素 nums[i],我们需要考虑以下三种情况来决定 maxDP[i] 和 minDP[i] 的值:

  1. 只取当前元素 nums[i]。
  2. 当前元素 nums[i] 乘以前一个元素的最大乘积 maxDP[i-1]。
  3. 当前元素 nums[i] 乘以前一个元素的最小乘积 minDP[i-1](当当前元素为负数时可能得到最大乘积)。

因此,状态转移方程为:

  • maxDP[i] = max(nums[i], nums[i] * maxDP[i-1], nums[i] * minDP[i-1])
  • minDP[i] = min(nums[i], nums[i] * maxDP[i-1], nums[i] * minDP[i-1])

最终答案为 maxDP 数组中的最大值。

完整代码

Python
class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        if not nums:
            return 0
        
        # 初始化 maxDP 和 minDP 为 nums,因为最小的子数组就是数组本身
        maxDP = nums[:]
        minDP = nums[:]
        for i in range(1, len(nums)):
            maxDP[i] = max(nums[i], nums[i] * maxDP[i-1], nums[i] * minDP[i-1])
            minDP[i] = min(nums[i], nums[i] * maxDP[i-1], nums[i] * minDP[i-1])
        
        # 最大乘积为 maxDP 中的最大值
        return max(maxDP)
Java
public class Solution {
    public int maxProduct(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        
        int[] maxDP = new int[nums.length];
        int[] minDP = new int[nums.length];
        maxDP[0] = minDP[0] = nums[0];
        int result = nums[0];
        
        for (int i = 1; i < nums.length; i++) {
            maxDP[i] = Math.max(nums[i], Math.max(nums[i] * maxDP[i - 1], nums[i] * minDP[i - 1]));
            minDP[i] = Math.min(nums[i], Math.min(nums[i] * maxDP[i - 1], nums[i] * minDP[i - 1]));
            result = Math.max(result, maxDP[i]);
        }
        
        return result;
    }
}

153. 寻找旋转排序数组中的最小值

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。

示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 3 次得到输入数组。

示例 3:

输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。

解题思路

我们可以使用二分查找算法。由于数组原本是升序的,并且进行了旋转,因此我们可以观察到至少有一半的数组仍然是有序的。我们可以利用这个特点来进行二分查找,从而在 O(log n) 的时间复杂度内找到数组中的最小元素。

具体算法如下:

  1. 初始化左指针 left 为 0,右指针 rightnums.length - 1
  2. left < right 时,进行二分查找:
    • 找到中间位置 mid = (left + right) / 2。
    • 如果 nums[mid] > nums[right],说明最小值在 mid 的右边,将 left 设置为 mid + 1
    • 否则,最小值在 mid 或其左边,将 right 设置为 mid
  3. 当二分查找结束时,leftright 将指向数组中最小元素的位置,返回 nums[left] 即可。

完整代码

Python
class Solution:
    def findMin(self, nums: List[int]) -> int:
        left, right = 0, len(nums) - 1
        while left < right:
            mid = (left + right) // 2
            if nums[mid] > nums[right]:
                left = mid + 1
            else:
                right = mid
        return nums[left]
Java
public class Solution {
    public int findMin(int[] nums) {
        int left = 0, right = nums.length - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] > nums[right]) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        return nums[left];
    }
}

160. 相交链表

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。

图示两个链表在节点 c1 开始相交

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

自定义评测:

评测系统 的输入如下(你设计的程序 不适用 此输入):

  • intersectVal - 相交的起始节点的值。如果不存在相交节点,这一值为 0
  • listA - 第一个链表
  • listB - 第二个链表
  • skipA - 在 listA 中(从头节点开始)跳到交叉节点的节点数
  • skipB - 在 listB 中(从头节点开始)跳到交叉节点的节点数

评测系统将根据这些输入创建链式数据结构,并将两个头节点 headA 和 headB 传递给你的程序。如果程序能够正确返回相交节点,那么你的解决方案将被 视作正确答案 。

 

示例 1:

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at '8'
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,6,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
— 请注意相交节点的值不为 1,因为在链表 A 和链表 B 之中值为 1 的节点 (A 中第二个节点和 B 中第三个节点) 是不同的节点。换句话说,它们在内存中指向两个不同的位置,而链表 A 和链表 B 中值为 8 的节点 (A 中第三个节点,B 中第四个节点) 在内存中指向相同的位置。

 

示例 2:

输入:intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at '2'
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [1,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。

解题思路

        要找到两个单链表相交的起始节点,我们可以使用双指针法。这个方法的核心思想是让两个指针分别遍历两个链表,当一个指针到达链表末尾时,将其重定向到另一个链表的头部继续遍历。如果两个链表相交,那么这两个指针最终会在相交节点相遇;如果不相交,那么这两个指针会同时到达各自链表的末尾(即都为 null),此时也能得到结果。

  1. 初始化两个指针 pApB,分别指向两个链表的头节点 headAheadB
  2. 同时遍历两个链表,每次各自前进一步。
  3. pA 到达链表末尾时,将 pA 重定向到 headB;同理,当 pB 到达链表末尾时,将 pB 重定向到 headA
  4. 如果两个链表相交,pApB 最终会在相交节点相遇;如果不相交,pApB 会同时为 null,此时退出循环。

完整代码

Python
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution:
    def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> Optional[ListNode]:
        pA, pB = headA, headB
        
        while pA != pB:
            pA = pA.next if pA else headB
            pB = pB.next if pB else headA
            
        return pA
        
Java
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        ListNode pA = headA, pB = headB;
        
        while (pA != pB) {
            pA = (pA != null) ? pA.next : headB;
            pB = (pB != null) ? pB.next : headA;
        }
        
        return pA;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昊昊该干饭了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值