【问题描述】
给定两个正整数a和b,求a~b范围内(含a和b),有多少个整数不是2、3、5、7的倍数。例如a = 20、b = 30,只有23、29不是2 3 5 7的倍数。
【输入形式】
输入两个正整数a和b(1≤a, b≤10^18)。
【输出形式】
输出a~b范围内(含a和b)不是2、3、5、7的倍数的数共有多少个。
【样例输入】
20 30
【样例输出】
2
思路:最开始只是想用循环将数据找出来,后来发现范围太大会超时,舍友又提示说有可以用集合论(人间好舍友:smile:)。后来去看了离散数学,发现已经丧失了阅读大量文字的能力:fearful:,后面找到一个文章非常直观:clap:
附上链接:https://blog.csdn.net/qq_43627087/article/details/98756908
主要理论是:
AUBUCUD = A+B+C+D -AB-AC-AD-BC-BD-CD + ABC+ABD+BCD+ABD -ABCD
下面是我的Accep