Bellman-Ford算法&&SPFA算法(单源最短路径)

Bellman-Ford算法

贝尔曼-福特算法是求解单源最短路径问题的一种算法。
原理是对图进行V-1次松弛操作,得到所有可能的最短路径。
其优于Dijkstra算法的方面是支持负权边实现简单,缺点是时间复杂度过高,高达O(VE)。V为顶点的个数,E为边的个数。

实现方式是通过m次迭代求出从源点到终点不超过m条边构成的最短路的路径。
一般情况下要求途中不存在负环。
但是在边数有限制的情况下允许存在负环。
因此Bellman-Ford算法是可以用来判断负环的。

专用处理可能存在负环的有限路线单源最短路问题

算法步骤

  1. 初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0;
  2. 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
  3. 检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。

有向图的测试代码:

#include<iostream>
#include<cstdio>
using namespace std;
 
#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点
 
typedef struct Edge //边
{
	int u, v;
	int cost;
}Edge;
 
Edge edge[N];
int dis[N], pre[N];
 
bool Bellman_Ford()
{
	for(int i = 1; i <= nodenum; ++i) //初始化
		dis[i] = (i == original ? 0 : MAX);
	for(int i = 1; i <= nodenum - 1; ++i)
		for(int j = 1; j <= edgenum; ++j)
			if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
			{
				dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
				pre[edge[j].v] = edge[j].u;
			}
			bool flag = 1; //判断是否含有负权回路
			for(int i = 1; i <= edgenum; ++i)
				if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
				{
					flag = 0;
					break;
				}
				return flag;
}
 
void print_path(int root) //打印最短路的路径(反向)
{
	while(root != pre[root]) //前驱
	{
		printf("%d-->", root);
		root = pre[root];
	}
	if(root == pre[root])
		printf("%d\n", root);
}
 
int main()
{
	scanf("%d%d%d", &nodenum, &edgenum, &original);
	pre[original] = original;
	for(int i = 1; i <= edgenum; ++i)
	{
		scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
	}
	if(Bellman_Ford())
		for(int i = 1; i <= nodenum; ++i) //每个点最短路
		{
			printf("%d\n", dis[i]);
			printf("Path:");
			print_path(i);
		}
	else
		printf("have negative circle\n");
	return 0;
}

SPFA(Shortest Path Faster Algorithm)算法

单源最短路径
Bellman-ford的队列优化高效

很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。SPFA的复杂度大约是O(kE),k是每个点的平均进队次数(一般的,k是一个常数,在稀疏图中小于2)。

但是,SPFA算法稳定性较差,在稠密图中SPFA算法时间复杂度会退化

一般可以从题目看出有无负权边,若仅正权边首选堆优化的dijkstra

实现方法:
建立一个队列,初始时队列里只有起始点。
建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到它本身的路径赋为0)。
然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。
重复执行直到队列为空。

此外,SPFA算法还可以判断图中是否有负权环,即一个点入队次数超过N。

朴素SPFA算法模板

#include <stdio.h>
#include <string.h>

const int N = 1010, M = 2e6, INF = 1e9;

int n, m;	//n是节点数,m是边数
int dist[N], q[N];	//dist[i]表示源点到i点的最短距离
int h[N], to[M], w[M], ne[M], idx;	//idx初始化为0
bool st[N];	//储存每个点是否在队列中

//添加边表示a到b有一条单向边,权值为c
void add(int a, int b, int c)
{
    to[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

//求源点s到其它点的最短路径
void spfa(int s)
{
    int hh, tt;	//队列头指针和尾指针
    memset(st, false, sizeof(st));
    for(int i = 1; i <= n; i++) 
    	dist[i] = INF;
   	dist[s] = 0;
    q[tt++] = s;
    st[s] = true;
    while(hh != tt)
    {	//队列不为空
        int t = q[hh++];
        st[t] = false;
        if(hh == N) hh = 0;
        for(int i = h[i]; ~i; i = ne[i])
        {
            if(dist[t] + w[i] < dist[to[i]])
            {
                dist[to[i]] = dist[t] + w[i];
                if(!st[to[i]])
                {
                    st[to[i]] = true;
                    q[tt++] = to[i];
                    if(tt == N) tt = 0;
                }
            }
        }
    }
}

int main()
{
    int a, b, c;
    scanf("%d %d %d", &n, &m, &s);
    memset(h, -1, sizeof(h));
    for(int i = 1; i <= m; i++)
    {
        scanf("%d %d %d", &a, &b, &c);
        add(a, b, c);
    }
   	spfa(s);
    for(int i = 1; i <= n; i++)
    {
        if(dist[i] == INF) 
        	puts("NO PATH");
        else 
        	printf("%d\n", dist[i]);
   	}
   	return 0;
}

SLF优化的SPFA算法(有被卡到指数级的风险)
SLF 优化:将普通队列换成双端队列,每次将入队结点距离和队首比较,如果更大则插入至队尾,否则插入队首。

#include <stdio.h>
#include <string.h>
#include <deque>
using namespace std;

const int N = 1010, M = 2e6, INF = 1e9;

int dist[N];
int h[N], to[M], w[M], ne[M], idx;
bool st[N];
int n, m;

void add(int a, int b, int c)
{
    to[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void spfa(int s)
{
    memset(st, false, sizeof(st));
    for(int i = 1; i <= n; i++) 
    	dist[i] = INF;
    dist[s] = 0;
    deque<int> q;
    q.push_front(s);
    st[s] = true;
    while(!q.empty())
    {
        int t = q.front();
        q.pop_front();
        st[t] = false;
        for(int i = h[t]; ~i; i = ne[i])
        {
            if(dist[t] + w[i] < dist[to[i]])
            {
                dist[to[i]] = dist[t] + w[i];
                if(!st[to[i]])
                {
                    if(!q.empty() && dist[to[i]] < dist[q.front()])
                        q.push_front(to[i]);
                    else 
                    	q.push_back(to[i]);
                    st[to[i]] = true;
                }
            }
        }
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值