yolov
深度学习两阶段、一阶段方法
one-stage:一个cnn网络做一个回归,出一个方框
two-stage:先做一个预选步骤,忽略一些差信息;再做回归。
one-stage:(优势)
速度快,做实时监测任务
(劣势):效果不咋地
mAP:表示效果好坏的指标
FPS: 表示速度快慢的指标
mAP:综合检测效果
IOU:交集和并集的比值
IOU越高,重合度越好。
Precision(精度):
Recall(召回率)
T --true P --positives正类 (正确判断)
FP false positives错误判断
左图女的绿色框和蓝框交集有问题,召回率很小。
假设置信度是0.9时,那么右边两个图全部不合格,就是错误判断,这就是recall = 1/(1+2)的由来
mvp值就是那些(取线的当前最大值,然后构成一个面积)
(如上图)