深度学习入门(九) 多层感知机实现

前言

核心内容来自博客链接1博客连接2希望大家多多支持作者
本文记录用,防止遗忘

多层感知机从零实现

为了与之前softmax回归,获得的结果进行比较, 我们将继续使用Fashion-MNIST图像分类数据集

1 获取和读取数据

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2 初始化模型参数

回想一下,Fashion-MNIST中的每个图像由28×28=784个灰度像素值组成。 所有图像共分为10个类别。 忽略像素之间的空间结构, 我们可以将每个图像视为具有784个输入特征 和10个类的简单分类数据集。 首先,我们将实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元。 注意,我们可以将这两个变量都视为超参数。 通常,我们选择2的若干次幂作为层的宽度。 因为内存在硬件中的分配和寻址方式,这么做往往可以在计算上更高效。

我们用几个张量来表示我们的参数。 注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。 跟以前一样,我们要为损失关于这些参数的梯度分配内存。

# 输入个数,输出个数,隐藏层的个数(超参数)
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = torch.randn(num_inputs, num_hiddens, requires_grad=False)
W1 = W1 * 0.01
W1.requires_grad=True
b1 = torch.zeros(num_hiddens, requires_grad=True)
W2 = torch.randn(num_hiddens,num_outputs,requires_grad=False)
W2 = W2 * 0.01
W2.requires_grad=True
b2 = torch.zeros(num_outputs,requires_grad=True)

params = [W1,b1,W2,b2]

我们在(softmax回归的从零开始实现)里已经介绍了,Fashion-MNIST数据集中图像形状为 28×28,类别数为10。本节中我们依然使用长度为 28×28=784 的向量表示每一张图像。因此,输入个数为784,输出个数为10。实验中,我们设超参数隐藏单元个数为256。

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)

params = [W1, b1, W2, b2]
for param in params:
    param.requires_grad_(requires_grad=True)

3 激活函数

为了确保我们对模型的细节了如指掌, 我们将实现ReLU激活函数, 而不是直接调用内置的relu函数。

def relu(X):
  a = torch.zeros_like(X)
  return torch.max(X,a)

4 模型

因为我们忽略了空间结构, 所以我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。 只需几行代码就可以实现我们的模型。

  # 将图片拉成一个矩阵784长度
  X = X.reshape((-1,num_inputs))
  H = relu(X @ W1 + b1)
  return (H @ W2 + b2)

5 损失函数

# 4 损失函数
# loss = nn.CrossEntropyLoss()
loss = nn.CrossEntropyLoss(reduction='none')
# reduction='none'加上这个图例才会出现train loss蓝线,不知道为啥

6 训练

幸运的是,多层感知机的训练过程与softmax回归的训练过程完全相同。 可以直接调用d2l包的train_ch3函数,实现可见前面内容

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
# loss不出来说明loss太大超过0.8了
注:由于原书的mxnet中的SoftmaxCrossEntropyLoss在反向传播的时候相对于沿batch维求和了,而PyTorch默认的是求平均,所以用PyTorch计算得到的loss比mxnet小很多(大概是maxnet计算得到的1/batch_size这个量级),所以反向传播得到的梯度也小很多,所以为了得到差不多的学习效果,我们把学习率调得成原书的约batch_size倍,原书的学习率为0.5,这里设置成100.0。(之所以这么大,应该是因为d2lzh_pytorch里面的sgd函数在更新的时候除以了batch_size,其实PyTorch在计算loss的时候已经除过一次了,sgd这里应该不用除了)

7 预测

# 6 预测
d2l.predict_ch3(net,test_iter)

输出
在这里插入图片描述

多层感知机简洁实现

import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(nn.Flatten(),# 将图片矩阵转换成一个向量
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

输出:
在这里插入图片描述

小结

可以通过手动定义模型及其参数来实现简单的多层感知机。
当多层感知机的层数较多时,本节的实现方法会显得较烦琐,例如在定义模型参数的时候。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
mlp多层感知机深度学习密切相关。深度学习是一种机器学习的方法,它基于神经网络的多层结构进行建模和训练。多层感知机(MLP)是最简单的神经网络结构之一,也是深度学习中常用的模型之一。 MLP由多个计算层组成,包括输入层、若干个隐层和输出层。每个隐层都由多个隐单元组成,而隐单元的个数是根据数据集的复杂度来确定的。对于简单的数据集,可以选择较少的隐单元,而对于复杂的数据集,可以选择更多的隐单元,甚至可以添加多个隐层。 例如,当我们使用MLP进行分类任务时,可以使用两个隐层,每个隐层都包含10个隐单元。这样的设置可以通过修改MLPClassifier类的hidden_layer_sizes属性来实现。具体的代码如下所示: ``` mlp = MLPClassifier(solver='lbfgs', random_state=0, hidden_layer_sizes=[10, 10]) ``` 这个设置意味着我们有两个隐层,每个隐层都有10个隐单元。 因此,通过使用MLP多层感知机,我们可以实现深度学习中的模型构建和训练,以解决各种机器学习问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [深度学习简介与MLP多层感知机](https://blog.csdn.net/qq_43355223/article/details/86593078)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值