线性DP-编辑距离模型

本文详细解析了如何通过动态规划解决字符串A到字符串B的最短编辑距离问题,包括删除、插入和替换操作。介绍了两种实例:Acwing902的单字符串编辑距离计算和Acwing899的多字符串操作优化。通过代码展示了如何利用状态转移方程进行求解,并提供了实际输入输出样例。
摘要由CSDN通过智能技术生成

题目关系图

在这里插入图片描述

Acwing902 最短编辑距离

给定两个字符串 A和 B,现在要将 A 经过若干操作变为 B,可进行的操作有:
删除–将字符串 A中的某个字符删除。
插入–在字符串 A的某个位置插入某个字符。
替换–将字符串 A中的某个字符替换为另一个字符。

现在请你求出,将 A变为 B
至少需要进行多少次操作。

输入格式

第一行包含整数 n,表示字符串 A的长度。
第二行包含一个长度为 n的字符串 A。
第三行包含整数 m,表示字符串 B的长度。
第四行包含一个长度为 m的字符串 B。
字符串中均只包含大写字母。

输出格式

输出一个整数,表示最少操作次数。

数据范围

1≤n,m≤1000

输入样例:

10 
AGTCTGACGC
11 
AGTAAGTAGGC

输出样例:

4

思路分析:
1.状态表示:
集合:表示把a[1-i]变成b[1-j]的所有操作的集合
属性:min
2.状态计算:
增加:f[i][j-1]+1
删除:f[i-1][j]+1
改:

1-改:不相同f[i-1][j-1]+1
2-不改:相同f[i-1]

胜利曙光AC:

#include<bits/stdc++.h>
using namespace std;
int n,m;
char a[1100],b[1100];
int f[1100][1100];

int main()
{
    scanf("%d%s",&n,a+1);
    scanf("%d%s",&m,b+1);
    for(int j=1;j<=m;j++)f[0][j]=j;//增加
    for(int i=1;i<=n;i++)f[i][0]=i;//删除
    
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            f[i][j]=min(f[i][j-1]+1,f[i-1][j]+1);//增加和删除情况
            if(a[i]!=b[j])f[i][j]=min(f[i][j],f[i-1][j-1]+1);//改:不相同f[i-1][j-1]+1
            else f[i][j]=min(f[i][j],f[i-1][j-1]);//改:相同f[i-1][j-1]+0
        }
    }
    
    cout<<f[n][m]<<endl;       
}

Acwing 899 编辑距离

给定 n 个长度不超过 10 的字符串以及 m
次询问,每次询问给出一个字符串和一个操作次数上限。

对于每次询问,请你求出给定的 n个字符串中有多少个字符串可以在上限操作次数内经过操作变成询问给出的字符串。

每个对字符串进行的单个字符的插入、删除或替换算作一次操作。

输入格式

第一行包含两个整数 n和 m。接下来 n行,每行包含一个字符串,表示给定的字符串。再接下来 m行,每行包含一个字符串和一个整数,表示一次询问。字符串中只包含小写字母,且长度均不超过 10。

输出格式

输出共 m行,每行输出一个整数作为结果,表示一次询问中满足条件的字符串个数。

数据范围

1≤n,m≤1000,

输入样例:

3 2
abc
acd
bcd
ab 1
acbd 2

输出样例:

1
3

胜利曙光AC:

#include<bits/stdc++.h>
using namespace std;
const int N = 15;
const int M = 1001;
int n,m,f[N][N];
char s[M][N];

int mincount(char a[],char b[]) 
{
    int lena = strlen(a+1);
    int lenb = strlen(b+1);
    
    for(int i=1; i<=lena; i++) f[i][0] = i;
    for(int i=1; i<=lenb; i++) f[0][i] = i;
    
    for(int i=1; i<=lena; i++)
        for(int j=1; j<=lenb; j++) 
        {
            f[i][j] = min(f[i-1][j]+1 , f[i][j-1]+1);
            if(a[i]==b[j]) f[i][j] = min(f[i][j] , f[i-1][j-1]);
            else f[i][j] = min(f[i][j] , f[i-1][j-1]+1);
        }
        
    return f[lena][lenb];
}


int main()
{
    scanf("%d%d",&n,&m);
    //输入n个字符串,每个字符串从下标1开始
    for(int i=0; i<n; i++) scanf("%s",s[i]+1);
    
    while(m--) 
    {
        char q[N];
        int limit;
        scanf("%s%d",q+1,&limit);

        int ans = 0;
        for(int i=0; i<n; i++) 
            //返回s[i]变成q的最小操作次数
            if(mincount(s[i],q)<=limit) ans++; 
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿斯卡码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值