数论之指标介绍及其应用(基于阶与原根的应用)


一、定义

内容

设正整数 n ≥ 2 n\geq2 n2并且有原根 g g g,那么 g 0 , g 1 … … g φ ( n ) − 1 g^0,g^1……g^{φ(n) -1} g0,g1gφ(n)1可以构成模 n n n的既约剩余系,对于任意满足 g c d ( a , n ) = 1 gcd(a,n)=1 gcd(a,n)=1 a a a,均有 g x ≡ a ( m o d g^x≡a (mod gxa(mod n ) n) n) ( 0 ≤ x < φ ( n ) ) (0\leq x<φ(n)) (0x<φ(n))

将解 x x x记作: i n d g a ind_ga indga m o d mod mod φ ( n ) φ(n) φ(n)
称为:a的以g为底模n的指标
在不会混淆的情况下可以将其简记为: I ( a ) I(a) I(a)
属于集合 ∈ { 0 , 1 , 2 … … φ ( n ) − 1 } \in\{0,1,2……φ(n) -1\} {0,1,2φ(n)1}


二、性质

1. a ≡ b ( m o d a≡b (mod ab(mod n ) ⇐ ⇒ I ( a ) ≡ I ( b ) ( m o d n)\Leftarrow \Rightarrow I(a)≡I(b)(mod n)I(a)I(b)(mod φ ( n ) ) φ(n)) φ(n))


2. I ( a b ) ≡ I ( a ) + I ( b ) ( m o d I(ab)≡I(a)+I(b) (mod I(ab)I(a)+I(b)(mod φ ( n ) ) φ(n)) φ(n))

证明

g c d ( a , n ) = g c d ( b , n ) = 1 gcd(a,n)=gcd(b,n)=1 gcd(a,n)=gcd(b,n)=1时,同时存在 g c d ( a b , n ) = 1 gcd(ab,n)=1 gcd(ab,n)=1,根据定义,有:
g I ( a b ) ≡ a b ( m o d g^{I(ab)}≡ab(mod gI(ab)ab(mod n ) n) n)
由于 a b ≡ g I ( a ) g I ( b ) ( m o d ab≡g^{I(a)}g^{I(b)}(mod abgI(a)gI(b)(mod n ) n) n)
最终可以得到: g I ( a b ) ≡ g I ( a ) g I ( b ) ( m o d g^{I(ab)}≡g^{I(a)}g^{I(b)}(mod gI(ab)gI(a)gI(b)(mod n ) n) n)

在结合之前介绍阶时用到的
定理三: g c d ( a , n ) = = 1 gcd(a,n)==1 gcd(a,n)==1, a x ≡ a y ( m o d a^x ≡a^y(mod axay(mod n ) n) n)的充要条件为 x ≡ y ( m o d x ≡y(mod xy(mod o r d n a ) ord_na) ordna)
由于 g g g n n n的原根,那么 o r d n a ord_na ordna就等于 φ ( n ) φ(n) φ(n)

最后得到了: I ( a ) ≡ I ( a ) + I ( b ) ( m o d I(a)≡I(a)+I(b) (mod I(a)I(a)+I(b)(mod φ ( n ) ) φ(n)) φ(n))

推论一: I ( a k ) ≡ k I ( a ) ( m o d I(a^k)≡kI(a) (mod I(ak)kI(a)(mod φ ( n ) ) φ(n)) φ(n))

推论二: I ( ∏ i = 1 k a i ) ≡ ∑ i = 1 k I ( a i ) ( m o d I(\prod_{i=1}^ka^i )≡\sum_{i=1}^kI(a^i) (mod I(i=1kai)i=1kI(ai)(mod φ ( n ) ) φ(n)) φ(n))


3.当 g c d ( a , n ) = 1 gcd(a,n)=1 gcd(a,n)=1,且有两个原根 g 1 , g 2 g_1,g_2 g1,g2时, i n d g 1 a ≡ i n d g 1 g 2 ∗ i n d g 2 a ( m o d ind_{g_1}a≡ind_{g_1}{g_2}*ind_{g_2}a(mod indg1aindg1g2indg2a(mod φ ( n ) ) φ(n)) φ(n))

证明

由两个原根,首先可以得到两个式子:
( 1 ) g 1 i n d g 1 a ≡ a ( m o d (1)g_1^{ind_{g_1}a}≡a (mod (1)g1indg1aa(mod n ) n) n)
( 2 ) g 2 i n d g 2 a ≡ a ( m o d (2)g_2^{ind_{g_2}a}≡a (mod (2)g2indg2aa(mod n ) n) n)

当然, g 2 g_2 g2同样满足 g c d ( g 2 , a ) = 1 gcd(g_2,a)=1 gcd(g2,a)=1,所以同时存在式子:
( 3 ) g 1 i n d g 1 g 2 ≡ g 2 ( m o d (3)g_1^{ind_{g_1}g_2}≡g_2 (mod (3)g1indg1g2g2(mod n ) n) n)

将式子(2)、(3)结合,
得: ( g 1 i n d g 1 g 2 ) i n d g 2 a ≡ a ( m o d {(g_1^{ind_{g_1}g_2})}^{ind_{g_2}a}≡a (mod (g1indg1g2)indg2aa(mod n ) n) n)
再与(1)结合,
得: g 1 i n d g 1 g 2 i n d g 2 a ≡ g 1 i n d g 1 a ( m o d g_1^{ind_{g_1}g_2ind_{g_2}a}≡g_1^{ind_{g_1}a} (mod g1indg1g2indg2ag1indg1a(mod n ) n) n)

再次使用前介绍阶时用到的
定理三: g c d ( a , n ) = = 1 gcd(a,n)==1 gcd(a,n)==1, a x ≡ a y ( m o d a^x ≡a^y(mod axay(mod n ) n) n)的充要条件为 x ≡ y ( m o d x ≡y(mod xy(mod o r d n a ) ord_na) ordna)
由于 g g g n n n的原根,那么 o r d n a ord_na ordna就等于 φ ( n ) φ(n) φ(n)

此时就得到了: i n d g 1 a ≡ i n d g 1 g 2 ∗ i n d g 2 a ( m o d ind_{g_1}a≡ind_{g_1}{g_2}*ind_{g_2}a(mod indg1aindg1g2indg2a(mod φ ( n ) ) φ(n)) φ(n))


三、简单应用·解方程 3 x 5 ≡ 1 ( m o d 3x^5≡1(mod 3x51mod 23 ) 23) 23)

可以用数论之阶与原根中的方法求出23的最小原根5

再求出对应的指标表:指数由0到 φ ( n ) − 1 φ(n)-1 φ(n)1

指数0123456789101112131415161718192021
模23的结果15210420817161192218211319315671214

由于 g c d ( 3 x 5 , 23 ) = g c d ( 1 , 23 ) = 1 gcd(3x^5,23)=gcd(1,23)=1 gcd(3x5,23)=gcd(1,23)=1,所以 3 x 5 、 1 3x^5、1 3x51有指标,
记作: i n d 5 ( 3 x 5 ) ind_5{(3x^5)} ind5(3x5) i n d 5 1 ind_5{1} ind51

再次使用前介绍阶时用到的
定理三: g c d ( a , n ) = = 1 gcd(a,n)==1 gcd(a,n)==1, a x ≡ a y ( m o d a^x ≡a^y(mod axay(mod n ) n) n)的充要条件为 x ≡ y ( m o d x ≡y(mod xy(mod o r d n a ) ord_na) ordna)
由于 g g g n n n的原根,那么 o r d n a ord_na ordna就等于 φ ( n ) φ(n) φ(n)

可以得到: i n d 5 ( 3 x 5 ) ≡ i n d 5 1 ( m o d ind_5{(3x^5)} ≡ind_5{1}(mod ind5(3x5)ind51(mod 22 ) 22) 22)
使用性质二
可以得到: i n d 5 ( 3 ) + 5 i n d 5 ( x ) ≡ i n d 5 1 ( m o d ind_5{(3)}+5 ind_5{(x)}≡ind_5{1}(mod ind5(3)+5ind5(x)ind51(mod 22 ) 22) 22)
5 i n d 5 ( x ) ≡ − 16 ( m o d 5 ind_5{(x)}≡-16(mod 5ind5(x)16(mod 22 ) 22) 22)
5 i n d 5 ( x ) ≡ 50 ( m o d 5 ind_5{(x)}≡50(mod 5ind5(x)50(mod 22 ) 22) 22)
再使用消去律,
得到: i n d 5 ( x ) ≡ 10 ( m o d ind_5{(x)}≡10(mod ind5(x)10(mod 22 ) 22) 22)
就是说: x ≡ 5 i n d 5 ( x ) ( m o d x≡5^{ind_5{(x)}}(mod x5ind5(x)(mod 23 ) 23) 23) ≡ 5 10 ( m o d ≡5^{10}(mod 510(mod 23 ) ≡ 9 ( m o d 23)≡9(mod 23)9(mod 23 ) 23) 23)
查表可知


  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数论基础及其应用 作者:沈忠华 编著 出版时间:2015年版 内容简介   《数论基础及其应用》为数学与密码学交叉学科的特色教材,内容包括整除理论、同余、连分数、同余方程、原根。《数论基础及其应用》以数论知识为主线,有机地融入数论应用(主要是在密码学中的应用)的内容,理论与应用的知识的广度和深度都适度。《数论基础及其应用》可作为数学与应用数学专业、信息与计算科学专业和信息安全专业的本科生基础教材,也可作为密码学与信息安全专业的研究生教材。 目录 前言 第1章整除理论 1.1带余数除法 1.2辗转相除法 1.3最大公约数的性质 1.4最小公倍数 1.5算术基本定理 第2章同余 2.1同余的基本性质 2.2计算星期几 2.3循环比赛 第3章简单密码 3.1仿射加密 3.2矩阵加密 第4章剩余系 4.1完全剩余系 4.2简化剩余系 4.3Euler定理,Fermat定理 4.4数论函数 第5章不定方程 5.1一次不定方程 5.2方程x2+y2=x2 第6章同余方程 6.1同余方程的基本概念 6.2孙子定理 6.3ρα的同余方程 6.4素数的同余方程 第7章公钥密码 7.1公钥密码系统 7.2RSA加密 第8章二次剩余 8.1素数的二次同余方程 8.2Legendre符号,二次互反律 8.3Jacobi符号 第9章原根 9.1指数及其基本性质 9.2原根指标 9.3伪素数 第10章实数的示 10.1连分数的基本性质 10.2实数的连分数示 10.3循环连分数 10.4实数的b进制示 第11章平方和 11.1二平方之和 11.2四平方之和 附录

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值