文章目录
一、步骤
二、要点
1.模型准备——形成一个比较清晰的“问题”
了解实际背景,明确建模目的,搜集有关信息,掌握对象特征
2.模型假设——作出合理的简化的假设
3.模型构成——用数学语言、符号描述问题
需发挥想象力,使用类比法,或借助已有模型
原则:尽量使用简单的数学工具
4.模型求解——常用求解软件和算法
常用软件:
matlab、mathematica功能较为综合,分别擅长数值运算和符号运算;
Lingo、lindo一般用于优化问题求解;
spss、sas一般用于统计问题求解。
常用算法:
数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、matlab作为工具;
图论算法、回溯搜索、分治算法、分支定界等计算机算法,模拟退火法、神经网络、遗传算法。
5.模型分析
如对结果的误差分析、统计分析、模型对数据的稳定性分析(如敏感性分析)
6.模型检验
与实际现象、数据相比较,检验模型的合理性、适用性
7.模型应用
与问题性质、建模目的、最终结果有关