欢~迎~光~临~^_^
目录
1、图的基本概念
图是由一组节点(通常称为顶点)和一组连接这些节点的边(通常称为边)组成的数据结构。图可以用于表示各种实际问题,如网络拓扑、道路系统、社交网络和电路等。
以下是图的一些基本概念:
-
顶点(Vertex):图中的节点。
-
边(Edge):图中连接顶点的线段。
-
有向图(Directed Graph):每条边都有一个指向性,即从一个顶点到另一个顶点的方向只能是一个方向。全部顶点的入度之和与出度之和相等。顶点的度等于其入度和出度之和。
-
无向图(Undirected Graph):边没有指向性,从一个顶点到另一个顶点的方向没有限制。全部顶点的度的和等于边的2倍。
-
边权(Edge Weight):边上附加的一个数值,代表两个顶点之间的距离或者权值。
-
度(Degree):一个顶点的度是指与该顶点相连的边的数目。在有向图中,度被分为入度和出度。
-
路径(Path):在图中,路径是通过边从一个顶点到另一个顶点的一系列顶点。
-
周长(Cycle):一个简单图中,如果从一个顶点出发经过若干边回到该顶点,称这个路径为周长。
-
连通图(Connected Graph):如果一个无向图中的任意两个顶点都可以通过一些边相连到达,则称该图为连通图。
-
强联通图(Strongly Connected Graph):对于有向图而言,如果任意两个顶点之间都存在双向路径,则称该图为强联通图。
-
带权图(Weighted Graph):图中的边带有权值或者距离。
-
子图(Subgraph):在一个图中取出一部分顶点和边所组成的图。
-
简单路径:顶点不重复出现的路径。
-
简单回路:除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。
-
连通分量:无向图中的极大连通子图。
-
强连通分量:有向图中的极大连通子图。
-
无向完全图:有n(n-1)/2条边。