图像的数据结构

数字图像处理中常用的数据结构有矩阵,链表,拓扑结构和关系结构。图像的数据结构用于目标表示和描述。
矩阵
矩阵用于描述图像,可以表示黑白图像、灰度图像和彩色图像。
矩阵中的一个元素表示图像的一个像素。矩阵描述黑白图像时,矩阵中的元素取值只有0和1两个值,因此黑白图像又叫二值图像或二进制图像。矩阵描述灰度图像时,矩阵中的元素由一个量化的灰度级描述,灰度级通常为8位,即0-255之间的整数,其中0表示黑色,255表示白色。
RGB彩色图像
由三原色红、绿、蓝组成,RGB图像的每个像素都是由不同灰度级的红、绿、蓝描述的,每种单色的灰度描述同灰度图像的描述方式相同。

RGB彩色图像

链码
链码用于描述目标图像的边界,通过规定链的起始坐标和链起始坐标的斜率用一小段线段来表示图像中的曲线。链码按照标准方向的斜率分为4向链码和8向链码。因为链码表示图像边界时只需标记起点坐标,其余点用线段的方向数代表方向即可,这种表示方法节省大量存储空间。
拓扑结构
拓扑结构用于描述图像的基本结构,通常在于形态学的图像处理或是二值图像中,用于描述目标事件发生的次数,在一个目标事件中有多少个孔洞,有多少个联通区域等。在图像中定义相邻的概念,一个像素与他周围的像素组成一个邻域,像素点p周围有8个相邻的像素点,若只考虑上下左右则有4个像素点则称4-邻域,若只考虑对角上的4个像素点则称为对角邻域,4-邻域和对角邻域都加上称为8-邻域。

邻域
在图像中,目标事件上的两个像素点如果可以用一个像素序列连通,连接像素p和q的都是4-邻域像素点,则p和q称为4-连通,连接p和q的都是8邻域像素点,则p和q称为8-连通。如果一个像素集合中的所有像素都是4连通,则这个集合称为4-组元,如果一个像素集合的所有像素都是8连通,则这个集合称为8-组元。

关系结构
关系结构用于描述一组目标物体之间的相互关系,常用的描述方法为串描述和树描述。串描述是一种一维结构,当用串描述图像时,需要建立一种合适的映射关系,将二维图像降为一维形式。串描述适用于那些图像元素的连接可以用来从头到尾或用其他连续形式的图像元素的描述。链码表示就是基于串描述思想描述的。
另一种关系描述是树描述,树是一种能够对不连接区域进行很好描述的方法。树是一个或一个以上节点的有限集合。其中,有一个唯一指定的节点为根,剩下的节点划分为多个互不连接的集合,这些集合称为子树,树的末梢节点称为叶子。
在树图中有两类重要信息:一个是关于节点的信息,另一个是节点与其相邻节点的关系信息。第一类信息表示目标物体的结构,第二类信息表示一个目标物体和另一个目标物体的关系。

树描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值