文章核心
这篇文章主要讨论了一种在不可靠的ReRAM(阻变存储器)设备上设计可靠的深度神经网络(DNN)加速器的方法。文章提出了两种关键技术来解决ReRAM固有的不可靠性问题:动态定点(DFP)数据表示和设备变异感知(DVA)训练方法。
一、引言
-
背景介绍:
- DNN在图像分类、语音识别、语言处理和计算机游戏等多个应用中表现出色。
- DNN的主要计算是向量-矩阵和矩阵-矩阵乘法操作,这些操作对数据的需求量大,使得传统冯·诺依曼架构在存储访问延迟和能量消耗方面成为瓶颈。
- 处理内存(PIM)通过将计算和存储直接集成,提供了解决存储瓶颈的解决方案。
- ReRAM是一种新兴的非易失性存储器,具有快速读写速度、高密度和高开关比,因而被广泛研究用于设计高效的机器学习加速器。
-
挑战:
- ReRAM设备的固有不可靠性,即设备电阻的随机变化,带来了设计可靠的ReRAM DNN加速器的主要挑战。
- ReRAM的计算是在模拟方式下进行的,电阻的偏差会直接导致乘积和结果的错误,从而显著降低计算精度。
-
提出的方法:
- 动态定点(DFP)数据表示:根据数据范围自适应地改变小数点位置,减少未使用的最重要位(MSB)带来的误差。
- 设备变异感知(DVA)训练:在训练过程中向参数添加随机噪声,以增强网络对参数变化的鲁棒性。
二、相关知识
-
深度神经网络(DNN):
- 卷积神经网络(CNN):包含卷积层、池化层和全连接层。主要计算在卷积层,通过应用滤波器提取输入特征。
- 递归神经网络(RNN):利用序列信息,通过记忆之前的计算,适用于许多时间依赖的应用。长短期记忆网络(LSTM)通过引入门机制解决RNN的梯度消失问题。
-
基于ReRAM的DNN加速器:
- ReRAM设备的电阻受set和reset电压调制,具有低电阻状态(LRS)和高电阻状态(HRS)。
- 通过控制电阻状态,实现数据存储和计算功能。
-
ReRAM设备的变异性:
- ReRAM电阻的随机变化对DNN加速器的设计提出了挑战。设备的电阻分布通常符合正态或对数正态分布。
- 设备变异性对计算精度的影响由统计分布的偏差、设备on/off比以及存储的位数决定。
图2(a):ReRAM结构及其电阻转换机制
- ReRAM结构:ReRAM设备由上下电极和夹在中间的电阻切换层(HfOx, TiO2, Al2O3 或其组合)组成。
- 电阻转换机制:
- Set过程:氧离子从晶格中逸出,形成氧空位导电丝,使设备处于低电阻状态(LRS)。
- Reset过程:导电丝断裂,形成一个间隙,设备处于高电阻状态(HRS)。
- 多级电阻:通过控制间隙长度,设备可以被重置为不同的电阻值,实现多级存储。
图2(b):用于向量矩阵乘法的ReRAM交叉阵列
- 核心组件:ReRAM加速器的核心是向量矩阵乘法器(VMM)引擎,执行乘法-累加(MAC)操作。
- 输入缓冲区:接收输入电压。
- 交叉阵列:通过字线(WL)和位线(BL)进行操作。
- DAC/ADC转换器:在交叉阵列内外进行数字-模拟和模拟-数字转换。
- 移位和累加单元:将部分结果累加在一起,得到最终结果。
图3展示了影响基于ReRAM的DNN加速器计算精度的因素。
图3(a):
- 1 bit,σ = σ0:当设备电阻的偏差较小时,读出误差较小。
图3(b):
- 1 bit,σ = 3σ0:当设备电阻的偏差较大时,读出误差增大,导致计算错误。
图3(c):
- 1 bit,低on/off比:较低的on/off比减小了不同电阻状态之间的间距,增加了错误的可能性。
图3(d):
- 2 bit,σ = σ0:使用多级电阻时,相邻状态有较大的重叠,增加了计算错误的可能性。
三、核心技术
A. 动态定点数据表示(DFP)
问题背景:
在深度神经网络(DNN)中,不同层的参数范围可以有很大差异。对于AlexNet训练的CIFAR-10数据集,第一层卷积层的参数范围比后面的全连接层大10倍。传统的固定点数据格式在处理这种范围差异时,未使用的最重要位(MSBs)会导致较大的误差,特别是在设备的on/off比不够大的情况下。
解决方案:
DFP允许根据数据范围自适应地改变小数点位置,从而最小化未使用的MSBs。这种方法可以显著减少读出误差。
其他优势:
- 先前的研究表明,动态定点表示可以加速机器学习应用的训练和推理。在本研究中,动态定点表示被用于减少设备变异的影响,而不是加速计算。
B. 设备变异感知训练(DVA)
问题背景:
DNN的训练过程是寻找参数空间内损失函数(或成本函数)的最优点。然而,如果从最优点发生小偏移,损失函数会急剧增加,表明DNN对参数变异非常敏感。
解决方案:
如果在一个损失函数相对较小的区域内(可能不会达到全局最小值),使用该区域内的参数可以建立一个对噪声更具鲁棒性的网络。这启发我们在训练过程中故意向DNN参数添加噪声,以提高鲁棒性。
训练过程:
- 对于每个训练批次,随机生成与卷积核大小相同的噪声矩阵,指定其均值和偏差。
- 通过按元素相乘的方式将噪声添加到参数中,并使用加入噪声的卷积核进行后续操作。