一个正整数 x 被称为一个可爱数当且仅当不存在任何正整数 a>1 满足 a2 是 x 的约数。
给定一个正整数 n,请计算并输出 n 的所有约数中,属于可爱数的最大约数。
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据占一行,包含一个整数 n。
输出格式
每组数据输出一行结果。
数据范围
1≤T≤10,
1≤n≤1012
输入样例:
2
10
12
输出样例:
10
6
思路:任何一个大于1的自然数n,都可以唯一分解成有限个质数的乘积,如果一个数存在平方数约数,那么这个数的质因数分解后,一定存在 i 使ai>(这里aiai为质因数分解后质数的指数),那么可以将n质因数分解,然后将n分解的所有不同质数相乘,便是答案。
#include <iostream>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
ll n;
int main()
{
ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int T;
cin>>T;
while(T--)
{
cin>>n;
ll ans=1;
for(ll i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans*=i;
while(n%i==0)n/=i;
}
}
if(n>1)ans*=n;
cout<<ans<<endl;
}
}