最大约数.

该博客介绍了一种算法,用于找出给定正整数的所有约数中最大的可爱数,即不存在任何大于1的正整数的平方是其约数的数。通过质因数分解的方法,遍历并判断每个约数,最终找到符合条件的最大约数。程序使用C++编写,适用于数据范围在1到10^12之间的整数。
摘要由CSDN通过智能技术生成

一个正整数 x 被称为一个可爱数当且仅当不存在任何正整数 a>1 满足 a2 是 x 的约数。

给定一个正整数 n,请计算并输出 n 的所有约数中,属于可爱数的最大约数。

输入格式
第一行包含整数 T,表示共有 T 组测试数据。

每组数据占一行,包含一个整数 n。

输出格式
每组数据输出一行结果。

数据范围
1≤T≤10,
1≤n≤1012
输入样例:
2
10
12
输出样例:
10
6
思路:任何一个大于1的自然数n,都可以唯一分解成有限个质数的乘积,如果一个数存在平方数约数,那么这个数的质因数分解后,一定存在 i 使ai>(这里aiai为质因数分解后质数的指数),那么可以将n质因数分解,然后将n分解的所有不同质数相乘,便是答案。

#include <iostream>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
ll n;

int main()
{
    ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    int T;
    cin>>T;
    
    while(T--)
    {
        cin>>n;
        ll ans=1;
        for(ll i=2;i*i<=n;i++)
        {
            if(n%i==0)
            {
                ans*=i;
                while(n%i==0)n/=i;
            }
        }
        if(n>1)ans*=n;
        cout<<ans<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红和黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值