问题1:在三星堆发现的一个外圆直径为85厘米,内圆直径为40厘米(假设)的青铜车轮,青铜车轮有5条车轴(射线),5条内弧线本质是双曲线,顶点与内圆相切,内弧双曲线的切线为与其相邻的车轴(射线),请以青铜太阳轮的中心为坐标原点,计算出青铜太阳轮与弧线对应的五条内“射线”的曲线方程,建立数学模型,推导出内弧线的一般方程,并根据一般方程画出四条、六条、八条、十二条射线的青铜太阳轮图案(使用matlab)。思路按照以下:
目前已写出公式推导过程、代码和求解结果,相关文件下载见文末地址[1]
很明显,曲线为双曲线,顶点在内圆上,双曲线的切线为2条射线。首先我们来复习一下双曲线:
双曲线由分开两个焦点的两个分离的称为臂或分支的曲线构成。随着到焦点的距离的变大,双曲线就越逼近称为渐近线的两条线。渐近线交叉于双曲线的中点,并对于东西开口的双曲线有斜率±b/a,对于北南开口的双曲线有斜率±a/b。