【算法基础18】c++中四种情况求解组合数(追加卡特兰数)

一、数据量大,a,b值小

        主要思想:提前定义组合数数组,由公式c[i][j]=c[i-1][j]+c[i-1][j-1]进行递推,预处理出所有组合数数组的值,求解时直接返回c[a][b]。

void init1(){
	for(int i=0;i<N;i++){
		for(int j=0;j<=i;j++){//注意是<=
			if(!j) c[i][j]=1;//初始化
			else c[i][j]=c[i-1][j]+c[i-1][j-1];//递推公式
		}
	}
}

二、数据量小,a,b值较大

        主要思想: ,将乘a!转化为乘a! mod p,将除以b!转化为乘b! mod p的乘法逆元,每次根据给定a,b计算组合数。

int qmi(int a,int k,int p){//快速幂
	int res=1;
	while(k){
		if(k&1) res=(LL)res*a%p;
		k>>=1;
		a=(LL)a*a%p;
	}
	return res;
}

void init2(){//预处理阶乘数组和乘法逆元数组
	fact[0]=infact[0]=1;
	for(int i=1;i<N;i++){
		fact[i]=(LL)fact[i-1]*i%mod;
		infact[i]=(LL)infact[i-1]*qmi(i,mod-2,mod)%mod;//用快速幂求乘法逆元
	}
}

int res=(LL)fact[a]*infact[b]%mod*infact[a-b]%mod;//代入公式求解组合数

三、a,b非常大,仅求同模p的值

        主要思想:根据卢卡斯定理 求解。

int C(int a,int b){
	int res=1;
	for(int i=1,j=a;i<=b;i++,j--){
		res=(LL)res*j%p;
		res=(LL)res*qmi(i,p-2,p)%p;//除以一个数转化为乘它的乘法逆元
	}
	return res;
}

int lucas(LL a,LL b){
	if(a<p&&b<p) return C(a,b);//a,b都小于p,定义求解
	return (LL)C(a%p,b%p)*lucas(a/p,b/p)%p;//代入卢卡斯公式
}

四、a,b非常大,求具体值

        主要思想:由定义 进行计算,为提高计算效率,先分解质因数,再将分子、分母中相同的质因数进行化简,最后进行高精度乘法。得质因数个数方法如下:

                ​​​​​​​        

#include<iostream>
#include<vector>
using namespace std;

const int N=1010;
int primes[N],cnt=0;
bool st[N];
int sum[N];//储存质因数个数


void get_primes(int n){//线性筛法分解质因数
	for(int i=2;i<=n;i++){
		if(!st[i]) primes[cnt++]=i;	
		for(int j=0;primes[j]<=n/i;j++){
			st[primes[j]*i]=true;
			if(i%primes[j]==0) break;
		}		
	}
}

int get(int n,int p){//求质因数个数
	int res=0;
	while(n){
		res+=n/p;
		n/=p;
	}
	return res;
}

vector<int> mul(vector<int> &A,int b){//高精度乘法
	vector<int> C;
	int t=0;
	for(int i=0;i<A.size()||t;i++){
		if(i<A.size()) t+=A[i]*b;
		C.push_back(t%10);
		t/=10;
	}
	return C;
}

int main(){
    int a,b;
	cin>>a>>b;

	get_primes(a);//分解分子的质因数

	for(int i=0;i<cnt;i++){
		int p=primes[i];
		sum[i]=get(a,p)-get(b,p)-get(a-b,p);//分子、分母中消去相同质因数p后的个数
	}

	vector<int> res;
	res.push_back(1);
	for(int i=0;i<cnt;i++){
		for(int j=0;j<sum[i];j++){
			res=mul(res,primes[i]);
		}
	}
	for(int i=res.size()-1;i>=0;i--) cout<<res[i];
	
	return 0;
}

五、卡特兰数

        主要思想:特殊排序问题(例:0和1的排序中任何一个前缀中1的个数不能超过0)转化为二维坐标系路径问题,题目中的特殊约数条件可以转化为x>=y,序列中的0可以转化为向右走一格,序列中的1可以转化为向上走一格,这样从原点走到终点(6,6)共有_{12}^{6}\textrm{C}条路径,即序列共有_{12}^{6}\textrm{C}​​​​​​​个。将终点(6,6)关于不满足约数条件红线对称,得到对称点(5,7),即所有触碰红线的路径都可以将后半段关于红线对称转化为走到(5,7)的路径,而走到(5,7)的路径共有_{12}^{5}\textrm{C}条,故最终满足条件的路径有_{12}^{6}\textrm{C}​​​​​​​-_{12}^{5}\textrm{C}条,推向一般情况即为_{2n}^{n}\textrm{C}-_{2n}^{n-1}\textrm{C},结果为​​​​​​​\mathbf{​{\color{Red}\frac{_{2n}^{n}\textrm{C}}{n+1} }},这个数即为卡特兰数

                                 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值