E - Takahashi and Animals(动态规划)

本文介绍了一个名为E-Takahashi的算法问题,涉及动物喂食的最优化策略。通过动态规划的方法,计算出在给定的动物和食物数量下,使得所有动物都能吃饱的最小成本。样例输入和输出展示了算法的应用,并给出了详细的代码实现,包括状态转移方程和边界条件的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E - Takahashi and Animals

题目描述

在这里插入图片描述

样例

Sample Input 1

5
2 5 3 2 5

Sample Output 1

7

Sample Input 2

20
29 27 79 27 30 4 93 89 44 88 70 75 96 3 78 39 97 12 53 62

Sample Output 2

426

数据范围

在这里插入图片描述

代码


int f[N][2];
int g[N][2];

// f[i][0]: 当前i没有饱,i之前所需要的最小值
// f[i][1]: 当前i饱了,i之前所需要的最小值

// f[i][0] = f[i - 1][1]
// f[i][1] = min(f[i - 1][0] + a[i - 1],  f[i - 1][1], a[i]);  ×
// 向后转移,你会发现,前面饱了的,会带i饱

// 不好转移?

// f[i][0]: 当前不是自己喂饱,前i的总最小值
// f[i][1]: 当前是自己喂饱,前i的总最小值

// f[i][0] = f[i - 1][1];
// f[i][1] = min(f[i - 1][0], f[i - 1][1]) + a[i];

int a[N];

void solve() {
	int n; cin >> n;
	for (int i = 1; i <= n; i++) cin >> a[i];
	f[1][0] = 2e9, f[1][1] = a[1];
	for (int i = 2; i <= n; i++) {
		f[i][0] = f[i - 1][1];
		f[i][1] = min(f[i - 1][0], f[i - 1][1]) + a[i];
	}
	g[1][0] = 2e9, g[1][1] = a[2];
	for (int i = 2; i <= n; i++) {
		g[i][0] = g[i - 1][1];
		g[i][1] = min(g[i - 1][0], g[i - 1][1]) + a[i % n + 1];
	}
	cout << min(min(f[n][0], f[n][1]), min(g[n][0], g[n][1])) << endl;
}

signed main() {
	IOS int _ = 1;
	// cin >> _;
	while(_--) { solve(); }
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ღCauchyོꦿ࿐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值