Langchain调用硅基流动siliconflow的api方法

前言:

最近正在进行Langchain的学习,但是官方的doc里面只有openai等调用api的操作,对国内用户相对不友好

解决方法:调用硅基流动的api来替换国外的api,且更加economy

from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama

# model = ChatOllama(model="llama3.1", temperature=0.7)

# model = ChatOpenAI(model="gpt-4")
from langchain_core.messages import HumanMessage,SystemMessage

llm = ChatOpenAI(
    openai_api_base="https://api.siliconflow.cn/v1/",
    openai_api_key="xxxxxxxi",    # app_key
    model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",   # 模型名称
)

messages = [
    SystemMessage(content="把这段话从中文翻译成意大利语"),
    HumanMessage(content="你好")

]

print(llm.invoke(messages))

即可完成对应的模型调用。

后续会更新对Langchain Demo的文章(希望自己学的够快)
        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值