在默认的lab中,系统无法识别到其他的虚拟环境,即默认为base,而在深度学习中,我们常常要使用不同的环境来进行实验,而最好用的莫过于anaconda,因此,我们的需求是:
在lab中识别并启用anaconda的其他环境

系统中有以下的环境,如何让jupyter识别以下的环境?
直接上干货
# 分别在不同环境下运行
# base
conda install nb_conda_kernels
# 其他需要被检测到的环境,都分别安装ipykernel
conda activate langchain-learn
conda install ipykernel
之后我们就会发现,在lab中能够找到环境啦

即使你在base环境中安装了nb_conda_kernels,你仍然需要在每个想要在Jupyter中使用的环境中安装ipykernel。这两个包扮演不同但互补的角色:
正确的工作流程
- 在
base(或运行Jupyter的环境)中安装nb_conda_kernels - 在每个你想要在Jupyter中作为内核使用的环境中安装
ipykernel
原因解释
nb_conda_kernels是一个"发现者":它能够自动找到并列出所有配置为Jupyter内核的Conda环境ipykernel是一个"启用者":它将特定环境配置为可用的Jupyter内核
如果你在一个环境中没有安装ipykernel,那么nb_conda_kernels将无法将该环境添加到Jupyter的内核列表中,因为该环境缺少成为内核的必要组件。
简单来说
nb_conda_kernels只需安装一次(在运行Jupyter的环境中)ipykernel需要在每个你想使用的环境中都安装
1325

被折叠的 条评论
为什么被折叠?



