jupyter lab中使用conda环境

在默认的lab中,系统无法识别到其他的虚拟环境,即默认为base,而在深度学习中,我们常常要使用不同的环境来进行实验,而最好用的莫过于anaconda,因此,我们的需求是:

在lab中识别并启用anaconda的其他环境


系统中有以下的环境,如何让jupyter识别以下的环境?

直接上干货
 

#  分别在不同环境下运行

#  base

conda install nb_conda_kernels

#  其他需要被检测到的环境,都分别安装ipykernel

conda activate langchain-learn

conda install ipykernel

之后我们就会发现,在lab中能够找到环境啦

即使你在base环境中安装了nb_conda_kernels,你仍然需要在每个想要在Jupyter中使用的环境中安装ipykernel。这两个包扮演不同但互补的角色:

正确的工作流程

  1. base(或运行Jupyter的环境)中安装nb_conda_kernels
  2. 每个你想要在Jupyter中作为内核使用的环境中安装ipykernel

原因解释

  • nb_conda_kernels是一个"发现者":它能够自动找到并列出所有配置为Jupyter内核的Conda环境
  • ipykernel是一个"启用者":它将特定环境配置为可用的Jupyter内核

如果你在一个环境中没有安装ipykernel,那么nb_conda_kernels将无法将该环境添加到Jupyter的内核列表中,因为该环境缺少成为内核的必要组件。

简单来说

  • nb_conda_kernels只需安装一次(在运行Jupyter的环境中)
  • ipykernel需要在每个你想使用的环境中都安装
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值