实验五 数字图像的空域滤波
一、实验目的
掌握图像的基本空域滤波方法
- 图像的平滑滤波
- 图像的锐化滤波
二、实验环境
- PC计算机
- MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox)
- 实验所需要的图片
- 实验原理
提示:1.平滑滤波的原理和公式
平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小
- 锐化滤波的原理和公式
图像锐化处理的目的是使模糊的图像变得更加清晰起来,通常针对引起图像模糊的原因而进行相应地锐化操作属于图像复原的内容。图像的模糊实质就是图像受到平均或积分运算造成的,因此可以对图像进行还原运算如微分运算来使图像清晰化。从频谱角度来分析,图像模糊的实质是其高频分量被衰减,因而可以通过高通滤波操作来清晰图像。但要注意,能够进行锐化处理的图像必须有较高的信噪比,否则锐化后图像信噪比反而更低,从而使噪声的增加得比信号还要多,因此一般是先取出或减轻噪声后再进行锐化处理。下面对图像锐化的集中算子进行学习
实验步骤和结果
练习用matalb命令实现图像的平滑和锐化滤波
步骤:
- 对图像进行平滑滤波,分别采用均值滤波、加权均值、中值、最大值和最小值滤波
均值滤波、加权滤波:
均值、加权均值:
a = imread ("E:\ins风\yun.tif")
figure
imshow (a)
title("原图")
a1=rgb2gray(a)
a2=imnoise(a1, 'salt & pepper', 0.02);
h1=fspecial('average',[3,3])
a3=imfilter(a2,h1);
figure