数字图像的空域滤波

本文介绍了数字图像的空域滤波实验,涵盖平滑滤波(均值、加权均值、中值、最大值和最小值滤波)和锐化滤波(一阶和二阶)方法。通过MATLAB实现,利用滤波器函数和图像处理工具箱进行图像噪声消除和细节增强。
摘要由CSDN通过智能技术生成

实验五 数字图像的空域滤波

一、实验目的

掌握图像的基本空域滤波方法

  1. 图像的平滑滤波
  2. 图像的锐化滤波

二、实验环境

  1. PC计算机
  2. MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox)
  3. 实验所需要的图片
  • 实验原理

提示:1.平滑滤波的原理和公式

平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小

  1. 锐化滤波的原理和公式

图像锐化处理的目的是使模糊的图像变得更加清晰起来,通常针对引起图像模糊的原因而进行相应地锐化操作属于图像复原的内容。图像的模糊实质就是图像受到平均或积分运算造成的,因此可以对图像进行还原运算如微分运算来使图像清晰化。从频谱角度来分析,图像模糊的实质是其高频分量被衰减,因而可以通过高通滤波操作来清晰图像。但要注意,能够进行锐化处理的图像必须有较高的信噪比,否则锐化后图像信噪比反而更低,从而使噪声的增加得比信号还要多,因此一般是先取出或减轻噪声后再进行锐化处理。下面对图像锐化的集中算子进行学习

实验步骤和结果

练习用matalb命令实现图像的平滑和锐化滤波

步骤:

  1. 对图像进行平滑滤波,分别采用均值滤波、加权均值、中值、最大值和最小值滤波

均值滤波、加权滤波:

均值、加权均值:

a = imread ("E:\ins风\yun.tif")

figure

imshow (a)

title("原图")

a1=rgb2gray(a)

a2=imnoise(a1, 'salt & pepper', 0.02);

h1=fspecial('average',[3,3])

a3=imfilter(a2,h1);

figure

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

光而不耀-2001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值