电磁场与电磁波-1-矢量微分

事先说明

在进行矢量微积分前,请务必明确两点:什么是‘常矢’、‘变矢’?矢量函数求偏导的法则有哪些?

鉴于文章篇幅,我们并不打算将以上两点一一解释清楚,代之请读者事先阅读相关文献

三种坐标系下的矢量的微分

直角坐标系

  • 直角坐标系的单位坐标矢量均为常矢,所以若对其进行求(偏)导,结果均为0
  • 因此我们可做以下推导,假设矢量为 E = E x e x + E y e y + E z e z E=E_xe_x+E_ye_y+E_ze_z E=Exex+Eyey+Ezez,对 x x x求偏导 ∂ E ∂ x = ∂ E x ∂ x e x + ∂ E y ∂ x e y + ∂ E z ∂ x e z \dfrac{\partial E}{\partial x}=\dfrac{\partial E_x}{\partial x}e_x+\dfrac{\partial E_y}{\partial x}e_y+\dfrac{\partial E_z}{\partial x}e_z xE=xExex+xEyey+xEzez

柱坐标系

  • 柱坐标系只有 e z e_z ez为常矢,其它两个坐标变量为变矢。尽管如此,对变矢求(偏)导仍可能得到0结果(例如对 e ρ e_\rho eρ z z z的偏导结果为零,这是因为 e ρ e_\rho eρ不随z的变化而变化)
  • 为了解决上述问题,我们提出一个方法:利用柱坐标与直角坐标的关系进行转换(当然,在最后不可以引入诸如 x , y x,y x,y这样的无关变量)
  • 下面给出一个具体案例:假设矢量为 E = E ρ e ρ + E φ e φ + E z e z E=E_\rho e_\rho+E_\varphi e_\varphi+E_z e_z E=Eρeρ+Eφeφ+Ezez,对 φ \varphi φ求偏导

首先,列写关系式 e ρ = e x c o s φ + e y s i n φ e_\rho=e_xcos\varphi+e_ysin\varphi eρ=excosφ+eysinφ e φ = − e x s i n φ + e y c o s φ e_\varphi=-e_xsin\varphi+e_ycos\varphi eφ=exsinφ+eycosφ
对上两式求 φ \varphi φ的偏导 ∂ e ρ ∂ φ = − e x s i n φ + e y c o s φ = e φ \dfrac{\partial e_\rho}{\partial \varphi}=-e_xsin\varphi+e_ycos\varphi=e_\varphi φeρ=exsinφ+eycosφ=eφ ∂ e φ ∂ φ = − e x c o s φ − e y s i n φ = − e ρ \dfrac{\partial e_\varphi}{\partial\varphi}=-e_xcos\varphi-e_ysin\varphi=-e_\rho φeφ=excosφeysinφ=eρ
对矢量求 φ \varphi φ的偏导 ∂ E ∂ φ = ( ∂ E ρ ∂ φ e ρ + E ρ ∂ e ρ ∂ φ ) + ( ∂ E φ ∂ φ e φ + E φ ∂ e φ ∂ φ ) + ∂ E z ∂ φ e z = ( ∂ E ρ ∂ φ e ρ + E ρ e φ ) + ( ∂ E φ ∂ φ e φ − E φ e ρ ) + ∂ E z ∂ φ e z = ( ∂ E ρ ∂ φ − E φ ) e ρ + ( ∂ E φ ∂ φ + E ρ ) e φ + ∂ E z ∂ φ e z \begin{aligned} \dfrac{\partial E}{\partial\varphi}&= (\dfrac{\partial E_\rho}{\partial\varphi}e_\rho+E_\rho\dfrac{\partial e_\rho}{\partial \varphi})+ (\dfrac{\partial E_\varphi}{\partial\varphi}e_\varphi+E_\varphi\dfrac{\partial e_\varphi}{\partial \varphi})+ \dfrac{\partial E_z}{\partial \varphi}e_z \\ &=(\dfrac{\partial E_\rho}{\partial\varphi}e_\rho+E_\rho e_\varphi)+ (\dfrac{\partial E_\varphi}{\partial\varphi}e_\varphi-E_\varphi e_\rho)+ \dfrac{\partial E_z}{\partial \varphi}e_z \\ &=(\dfrac{\partial E_\rho}{\partial\varphi}-E_\varphi)e_\rho+(\dfrac{\partial E_\varphi}{\partial\varphi}+E_\rho)e_\varphi+\dfrac{\partial E_z}{\partial \varphi}e_z \end{aligned} φE=(φEρeρ+Eρφeρ)+(φEφeφ+Eφφeφ)+φEzez=(φEρeρ+Eρeφ)+(φEφeφEφeρ)+φEzez=(φEρEφ)eρ+(φEφ+Eρ)eφ+φEzez

球坐标系

对于球坐标系,三个坐标矢量均为变矢,处理办法相同,可参照柱坐标系的转化

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值