1049. 大盗阿福
阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。
这条街上一共有 N 家店铺,每家店中都有一些现金。
阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。
作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。
他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?
输入格式
输入的第一行是一个整数 T,表示一共有 T 组数据。
接下来的每组数据,第一行是一个整数 N ,表示一共有 N 家店铺。
第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。
每家店铺中的现金数量均不超过1000。
输出格式
对于每组数据,输出一行。
该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。
数据范围
1≤T≤50,
1≤N≤105
输入样例:
2
3
1 8 2
4
10 7 6 14
输出样例:
8
24
样例解释
对于第一组样例,阿福选择第2家店铺行窃,获得的现金数量为8。 对于第二组样例,阿福选择第1和4家店铺行窃,获得的现金数量为10+14=24。
题目来源《信息学奥赛一本通》
本题题解
如果偷第 i 家店铺,则 i-1不能被偷f[i ,1]f[ i-1, 0 ]+w[ i ];
如果不偷第 i 家店铺,则第 i-1任意: f[ i ,0]=max(f[ i-1,1 ],f[ i-1 , 0 ]);
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int INF=0x3f3f3f3f;
int n;
int w[N];
int f[N][2];
void init()
{
f[0][0]=0;
f[0][1]=-INF;//0或正无穷都行 只有f[1][0]会用到f[0][1]
//,但是f[1][0] = max(f[0][0], f[0][1]),所以f[0][1]设置成0和负无穷都可以。
}
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)
cin>>w[i];
for(int i=1;i<=n;i++)
{
f[i][0]=max(f[i-1][1],f[i-1][0]);
f[i][1]=f[i-1][0]+w[i];
}
cout<<max(f[n][0],f[n][1])<<endl;
}
int main()
{
init();
int t;
cin>>t;
while(t--)
solve();
return 0;
}
1057. 股票买卖 IV
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润,你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。一次买入卖出合为一笔交易。
输入格式
第一行包含整数 N 和 k,表示数组的长度以及你可以完成的最大交易数量。
第二行包含 N 个不超过 10000 的正整数,表示完整的数组。
*输出格式
输出一个整数,表示最大利润。
数据范围
1≤N≤105,
1≤k≤100
输入样例1:
3 2
2 4 1
输出样例1:
2
输入样例2:
6 2
3 2 6 5 0 3
输出样例2:
7
样例解释*
样例1:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
样例2:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。共计利润 4+3 = 7.
题目来源:LeetCode
本题题解
状态转移方程
f[i][j][0] = max(f[i-1][j][1]+w[i],f[i-1][j][0]);
f[i][j][1] = max(f[i-1][j-1][0]-w[i],f[i-1][j][1]);
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int M=110;
int n,m;
int w[N];
int f[N][M][2];
void init()
{
for(int i=0;i<=n;i++)f[i][0][0]=0;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>w[i];
memset(f,-0x3f,sizeof f);
init();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+w[i]);
f[i][j][1]=max(f[i-1][j][1],f[i-1][j-1][0]-w[i]);
}
}
int res=0;
for(int i=1;i<=m;i++)res=max(res,f[n][i][0]);
cout<<res<<endl;
return 0;
}
1058. 股票买卖 V
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
输入格式
第一行包含整数 N,表示数组长度。
第二行包含 N 个不超过 10000 的正整数,表示完整的数组。
输出格式
输出一个整数,表示最大利润。
数据范围
1≤N≤105
输入样例:
5
1 2 3 0 2
输出样例:
3
样例解释
对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出],第一笔交易可得利润 2-1 = 1,第二笔交易可得利润 2-0 = 2,共得利润 1+2 = 3。
题目来源:LeetCode
本题题解
状态转移方程:
f[i][0]=max( f[i-1][0],f[i-1][2]-w[i]);
f[i][1]=f[i-1][0]+w[i];
f[i][2]=max(f[i-1][1],f[i-1][2]);
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int INF=0x3f3f3f3f;
int n;
int w[N];
int f[N][3];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>w[i];
f[0][0]=f[0][1]=-INF,f[0][2]==0;
for(int i=1;i<=n;i++)
{
f[i][0]=max(f[i-1][0],f[i-1][2]-w[i]);
f[i][1]=f[i-1][0]+w[i];
f[i][2]=max(f[i-1][2],f[i-1][1]);
}
cout<<max(f[n][1],f[n][2])<<endl;
return 0;
}