状态机模型(上)

1049. 大盗阿福

阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。

这条街上一共有 N 家店铺,每家店中都有一些现金。

阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。

作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。

他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?

输入格式
输入的第一行是一个整数 T,表示一共有 T 组数据。

接下来的每组数据,第一行是一个整数 N ,表示一共有 N 家店铺。

第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。

每家店铺中的现金数量均不超过1000。

输出格式
对于每组数据,输出一行。

该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。

数据范围

1≤T≤50,
1≤N≤105

输入样例:

2
3
1 8 2
4
10 7 6 14

输出样例:

8
24

样例解释
对于第一组样例,阿福选择第2家店铺行窃,获得的现金数量为8。 对于第二组样例,阿福选择第1和4家店铺行窃,获得的现金数量为10+14=24。
题目来源《信息学奥赛一本通》
本题题解
在这里插入图片描述
如果偷第 i 家店铺,则 i-1不能被偷f[i ,1]f[ i-1, 0 ]+w[ i ];
如果不偷第 i 家店铺,则第 i-1任意: f[ i ,0]=max(f[ i-1,1 ],f[ i-1 , 0 ]);

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int INF=0x3f3f3f3f;
int n;
int w[N];
int f[N][2];
void init()
{
    f[0][0]=0;
    f[0][1]=-INF;//0或正无穷都行   只有f[1][0]会用到f[0][1]
    //,但是f[1][0] = max(f[0][0], f[0][1]),所以f[0][1]设置成0和负无穷都可以。
}
void solve()
{
    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>w[i];
    for(int i=1;i<=n;i++)
    {
        f[i][0]=max(f[i-1][1],f[i-1][0]);
        f[i][1]=f[i-1][0]+w[i];
    }
    cout<<max(f[n][0],f[n][1])<<endl;
}
int main()
{
    init();
    int t;
    cin>>t;
    while(t--)
        solve();
    return 0;
}

1057. 股票买卖 IV

给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润,你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。一次买入卖出合为一笔交易。

输入格式
第一行包含整数 N 和 k,表示数组的长度以及你可以完成的最大交易数量。

第二行包含 N 个不超过 10000 的正整数,表示完整的数组。

*输出格式
输出一个整数,表示最大利润。

数据范围

1≤N≤105,
1≤k≤100

输入样例1:

3 2
2 4 1

输出样例1:

2

输入样例2:

6 2
3 2 6 5 0 3

输出样例2:

7

样例解释*
样例1:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

样例2:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。共计利润 4+3 = 7.
题目来源:LeetCode
本题题解
在这里插入图片描述
状态转移方程
f[i][j][0] = max(f[i-1][j][1]+w[i],f[i-1][j][0]);
f[i][j][1] = max(f[i-1][j-1][0]-w[i],f[i-1][j][1]);

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int M=110;
int n,m;
int w[N];
int f[N][M][2];
void init()
{
    for(int i=0;i<=n;i++)f[i][0][0]=0;
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>w[i];
    memset(f,-0x3f,sizeof f);
    init();
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+w[i]);
            f[i][j][1]=max(f[i-1][j][1],f[i-1][j-1][0]-w[i]);
        }
    }
    int res=0;
    for(int i=1;i<=m;i++)res=max(res,f[n][i][0]);
    cout<<res<<endl;
    return 0;
}

1058. 股票买卖 V

给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
输入格式
第一行包含整数 N,表示数组长度。

第二行包含 N 个不超过 10000 的正整数,表示完整的数组。

输出格式
输出一个整数,表示最大利润。

数据范围

1≤N≤105

输入样例:

5
1 2 3 0 2

输出样例:

3

样例解释
对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出],第一笔交易可得利润 2-1 = 1,第二笔交易可得利润 2-0 = 2,共得利润 1+2 = 3。
题目来源:LeetCode
本题题解
在这里插入图片描述
状态转移方程:
f[i][0]=max( f[i-1][0],f[i-1][2]-w[i]);
f[i][1]=f[i-1][0]+w[i];
f[i][2]=max(f[i-1][1],f[i-1][2]);

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int INF=0x3f3f3f3f;
int n;
int w[N];
int f[N][3];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)cin>>w[i];
    f[0][0]=f[0][1]=-INF,f[0][2]==0;
    for(int i=1;i<=n;i++)
    {
        f[i][0]=max(f[i-1][0],f[i-1][2]-w[i]);
        f[i][1]=f[i-1][0]+w[i];
        f[i][2]=max(f[i-1][2],f[i-1][1]);
    }
    cout<<max(f[n][1],f[n][2])<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leimingzeOuO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值