今天在整理这道题
链接: 子数组异或和
发现了一个比较有意思的数学结论,在这里分享一下。
给一个数组,[
a
1
a_1
a1,
a
2
a_2
a2,…,
a
n
a_n
an],讲这个数组分成两个区间,使得左半边的异或和==右半边的异或和,即
x
=
y
x=y
x=y。
那么将这个区间重新划分,是否能得到
x
′
=
y
′
x'=y'
x′=y′?
结论一:能得到
x
′
=
y
′
x'=y'
x′=y′
证明:
异或和,就是将这些数字连续异或所得的数字,x=
a
1
⊕
a
2
⊕
.
.
.
a
x
a_1⊕a_2⊕...a_x
a1⊕a2⊕...ax。
结果的二进制位上的每一位究竟是 1 or 0 是根据这组数字的二进制在这以为上的 1 的奇偶情况,如果1的个数是奇数,那么这一位是1,否则是0
那么举一个简单的例子:
a
[
4
]
=
a [4] =
a[4]=[1,1,1,1]
- [1,1 | 1,1] x = 0 , y = 0 x= 0, y=0 x=0,y=0,
- [1 | 1,1,1] x ′ = 1 , y ′ = 1 x'=1,y'=1 x′=1,y′=1,
不难发现:两个区间异或和相同,所以两边数字的二进制的各个位上的1的奇偶性是一致的,划分区间时中间指针的移动,两个区间的奇偶性始终保持一直。
结论二:[i,i+1,…,j]的异或和 = s[j]^s[i-1]。
证明:
s[i]表示前i个字母的异或前缀和,求[i ~ j]这一段的异或和:
s
j
⊕
s
i
−
1
s_j ⊕ s_{i-1}
sj⊕si−1
因为
s
j
s_j
sj是
a
1
⊕
a
2
⊕
.
.
.
⊕
a
i
−
1
⊕
a
i
⊕
.
.
.
⊕
a
j
a_1 ⊕ a_2 ⊕ ... ⊕ a_{i-1} ⊕a_i ⊕ ... ⊕ a_j
a1⊕a2⊕...⊕ai−1⊕ai⊕...⊕aj
s
i
−
1
是
a
1
⊕
a
2
⊕
.
.
.
⊕
a
i
−
1
s_{i-1} 是a_1 ⊕ a_2 ⊕ ... ⊕ a_{i-1}
si−1是a1⊕a2⊕...⊕ai−1
所以
s
j
⊕
s
i
−
1
=
=
a
i
⊕
.
.
.
⊕
a
j
s_j ⊕ s_{i - 1} == a_i ⊕ ... ⊕ a_j
sj⊕si−1==ai⊕...⊕aj,即是[i ~ j]这一段的异或和。