一个有意思的数学结论

今天在整理这道题
链接: 子数组异或和
发现了一个比较有意思的数学结论,在这里分享一下。
在这里插入图片描述
给一个数组,[ a 1 a_1 a1, a 2 a_2 a2,…, a n a_n an],讲这个数组分成两个区间,使得左半边的异或和==右半边的异或和,即 x = y x=y x=y
那么将这个区间重新划分,是否能得到 x ′ = y ′ x'=y' x=y
结论一:能得到 x ′ = y ′ x'=y' x=y
证明
异或和,就是将这些数字连续异或所得的数字,x= a 1 ⊕ a 2 ⊕ . . . a x a_1⊕a_2⊕...a_x a1a2...ax
结果的二进制位上的每一位究竟是 1 or 0 是根据这组数字的二进制在这以为上的 1 的奇偶情况,如果1的个数是奇数,那么这一位是1,否则是0
那么举一个简单的例子:
a [ 4 ] = a [4] = a[4]=[1,1,1,1]

  1. [1,1 | 1,1] x = 0 , y = 0 x= 0, y=0 x=0,y=0,
  2. [1 | 1,1,1] x ′ = 1 , y ′ = 1 x'=1,y'=1 x=1,y=1,

不难发现:两个区间异或和相同,所以两边数字的二进制的各个位上的1的奇偶性是一致的,划分区间时中间指针的移动,两个区间的奇偶性始终保持一直。
结论二:[i,i+1,…,j]的异或和 = s[j]^s[i-1]。
证明:
s[i]表示前i个字母的异或前缀和,求[i ~ j]这一段的异或和: s j ⊕ s i − 1 s_j ⊕ s_{i-1} sjsi1
因为 s j s_j sj a 1 ⊕ a 2 ⊕ . . . ⊕ a i − 1 ⊕ a i ⊕ . . . ⊕ a j a_1 ⊕ a_2 ⊕ ... ⊕ a_{i-1} ⊕a_i ⊕ ... ⊕ a_j a1a2...ai1ai...aj
s i − 1 是 a 1 ⊕ a 2 ⊕ . . . ⊕ a i − 1 s_{i-1} 是a_1 ⊕ a_2 ⊕ ... ⊕ a_{i-1} si1a1a2...ai1
所以 s j ⊕ s i − 1 = = a i ⊕ . . . ⊕ a j s_j ⊕ s_{i - 1} == a_i ⊕ ... ⊕ a_j sjsi1==ai...aj,即是[i ~ j]这一段的异或和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leimingzeOuO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值