20240406-算法复习打卡day46||● 139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!

139.单词拆分 
令word = s中从 j 处开始,长度 i - j 的字符串
如果wordSet.find(word) != wordSet.end(),说明word在wordSet中,当前d[j]为true时,符合条件
class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> dp(s.size() + 1, false);
        dp[0] = true;
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 0; j < i; j++) {
                string word = s.substr(j, i - j);
                if (wordSet.find(word) != wordSet.end() && dp[j]) {
                    dp[i] = true;
                }
            }
        }
        return dp[s.size()];
    }
};

关于多重背包,你该了解这些! 
题目描述

你是一名宇航员,即将前往一个遥远的行星。在这个行星上,有许多不同类型的矿石资源,每种矿石都有不同的重要性和价值。你需要选择哪些矿石带回地球,但你的宇航舱有一定的容量限制。 

给定一个宇航舱,最大容量为 C。现在有 N 种不同类型的矿石,每种矿石有一个重量 w[i],一个价值 v[i],以及最多 k[i] 个可用。不同类型的矿石在地球上的市场价值不同。你需要计算如何在不超过宇航舱容量的情况下,最大化你所能获取的总价值。

输入描述

输入共包括四行,第一行包含两个整数 C 和 N,分别表示宇航舱的容量和矿石的种类数量。 

接下来的三行,每行包含 N 个正整数。具体如下: 

第二行包含 N 个整数,表示 N 种矿石的重量。 

第三行包含 N 个整数,表示 N 种矿石的价格。 

第四行包含 N 个整数,表示 N 种矿石的可用数量上限。

输出描述

输出一个整数,代表获取的最大价值。

#include <bits/stdc++.h>
using namespace std;
int main(){
    int bagWeight, n;
    cin >> bagWeight >> n;
    vector<int> weight(n, 0);
    vector<int> value(n, 0);
    vector<int> nums(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    for (int i = 0; i < n; i++) cin >> nums[i];
    
    vector<int> dp(bagWeight + 1, 0);
    for (int i = 0; i < n; i++) {
        for (int j = bagWeight; j >= weight[i]; j--) {
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) {
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
    }
    cout << dp[bagWeight] << endl;
}

其中 for (int k)代表 把每种物品数量再放在01背包里遍历一遍(多重背包转化为了01背包)

for (int i = 0; i < n; i++) {
        for (int j = bagWeight; j >= weight[i]; j--) {
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) {
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
    }

背包问题总结篇!  
问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
问装满背包有几种方法:dp[j] += dp[j - nums[i]] ;

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历

完全背包

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值