20240404-算法复习打卡day44||● 完全背包● 518. 零钱兑换 II ● 377. 组合总和 Ⅳ

文章介绍了使用动态规划方法解决背包问题的两种版本:完全背包和零钱兑换问题。完全背包允许物品无限次选择,而零钱兑换则关注组合次数。作者详细解释了两种算法的遍历顺序和dp数组的更新过程。
摘要由CSDN通过智能技术生成
01背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

完全背包
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}
题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的重量,并且具有不同的价值。

小明的行李箱所能承担的总重量为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料可以选择无数次,并且可以重复选择。

输入描述

第一行包含两个整数,N,V,分别表示研究材料的种类和行李空间 

接下来包含 N 行,每行两个整数 wi 和 vi,代表第 i 种研究材料的重量和价值

#include <bits/stdc++.h>
using namespace std;

void completePack(vector<int> weight, vector<int> value, int bagweight) {
    vector<int> dp(bagweight + 1, 0);
    for (int j = 0; j <= bagweight; j++) {
        for (int i = 0; i < weight.size(); i++) {
            if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagweight] << endl;
}
int main() {
    int N, V;
    cin >> N >> V;
    vector<int> weight;
    vector<int> value;
    for (int i = 0; i < N; i++) {
        int w;
        int v;
        cin >> w >> v;
        weight.push_back(w);
        value.push_back(v);
    }
    completePack(weight, value, V);
    return 0;
}

518. 零钱兑换 II 
注意两个for循环的顺序
先遍历物品,再遍历背包容量,dp[j]代表组合数;

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现

{5, 1}的情况。

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

先遍历背包容量,再遍历物品,dp[j]代表排列数

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++) {
            for (int j = coins[i]; j <= amount; j++) {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

一个简单例子:

假设我们有一个金额为 5 的硬币兑换问题,硬币的面额为 [1, 2, 5]。

我们要计算组合成金额 5 的组合数。

初始时,dp 数组为 [1, 0, 0, 0, 0, 0],其中 dp[0] = 1,表示组合成金额 0 的组合数为 1,其他位置都初始化为 0。

接下来,我们遍历每个硬币。

  1. 当考虑面额为 1 的硬币时:
    • 我们从 coins[i] = 1 开始遍历背包容量,即从 j = 1 开始。
    • 对于 j = 1,更新 dp[1] += dp[0],即 dp[1] += 1,表示组合成金额 1 的组合数为 1。
    • 对于 j = 2,更新 dp[2] += dp[1],即 dp[2] += 1,表示组合成金额 2 的组合数为 1。
    • 对于 j = 3,更新 dp[3] += dp[2],即 dp[3] += 1,表示组合成金额 3 的组合数为 1。
    • 对于 j = 4,更新 dp[4] += dp[3],即 dp[4] += 1,表示组合成金额 4 的组合数为 1。
    • 对于 j = 5,更新 dp[5] += dp[4],即 dp[5] += 1,表示组合成金额 5 的组合数为 1。
  2. 当考虑面额为 2 的硬币时:
    • 我们从 coins[i] = 2 开始遍历背包容量,即从 j = 2 开始。
    • 对于 j = 2,更新 dp[2] += dp[0],即 dp[2] += 1,表示组合成金额 2 的组合数为 2。
    • 对于 j = 3,更新 dp[3] += dp[1],即 dp[3] += 1,表示组合成金额 3 的组合数为 2。
    • 对于 j = 4,更新 dp[4] += dp[2],即 dp[4] += 2,表示组合成金额 4 的组合数为 3。
    • 对于 j = 5,更新 dp[5] += dp[3],即 dp[5] += 1,表示组合成金额 5 的组合数为 3。
  3. 当考虑面额为 5 的硬币时:
    • 我们从 coins[i] = 5 开始遍历背包容量,即从 j = 5 开始。
    • 对于 j = 5,更新 dp[5] += dp[0],即 dp[5] += 1,表示组合成金额 5 的组合数为 4。

最终,dp[amount] 的值为 4,表示组合成金额 5 的组合数为 4。

377. 组合总和 Ⅳ  
组合问题:
for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}
class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
    
        for (int j = 0; j <= target; j++) {
            for (int i = 0; i < nums.size(); i++) {
                if (j - nums[i] >= 0 && dp[j] < INT_MAX - dp[j - nums[i]]) {
                    dp[j] += dp[j - nums[i]];
                }
            }
        }

        return dp[target];
    }
};

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值